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Abstract 

The performance and functionality of semiconductor devices is directly affected 

by the transport properties of carriers, as such many techniques for the extraction of 

semiconductor parameters (i.e. the absorption coefficient α, the diffusion length L, the 

dead layer thickness Zt, the surface recombination velocity S, and the relative 

quantum efficiency Q) using the cathodeluminescence/EBIC in the Scanning Electron 

Microscopy (SEM) were developed. In this work we develop novel and effective 

approaches for the extraction of these semiconductor parameters directly from any 

theoretical/experimental steady state cathodoluminescence (CL) signal/ Electron 

Beam Induced Current (EBIC). Our extraction techniques based on Artificial Neural 

Networks ANN /genetic algorithms (GA) allow us to obtain simultaneously near –

optimum values for the semiconductor parameters. Compared to other techniques in 

the literature, our approaches are found to be efficient and successful. 

 

La performance et la fonctionnalité des dispositifs semi-conducteurs est 

directement affecté par les propriétés de transport des minoritaires, de nombreuses 

techniques pour l'extraction de ces paramètres de semi-conducteurs (tels 

que: le coefficient d'absorption α, la longueur de diffusion L, l'épaisseur de la couche 

isolatrice Zt, la vitesse de recombinaison de surface S, et le facteur de rendement 

quantique relative Q) pour les méthodes cathodoluminescence/ EBIC de  Microscopie 

Electronique à Balayage (SEM) ont été développés. Dans ce travail, nous 

développons de nouvelles approches d'extraction de ces paramètres  directement des 

signaux cathodoluminescence(CL)  / Courant induit de faisceau électronique (EBIC) 

. Nos techniques d'extraction baser sur les réseaux artificiels 

de neurones ANN / algorithmes génétiques (GA) permettent l'obtention 
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simultanée des valeurs proche de l'optimale des paramètres de semi-

conducteurs. Comparant avec des techniques trouvées dans la 

littérature, nos approches sont efficace et très réussites. 

 

عي  اقلا ن ا ال ز اش ا اج ا ااقلي , ط   فاعليت قل ل حاما الشح  تعت على خصائص ال

ا قيم  ها است ي تم انجا ي  ا ع باام معامبل اامتصبا , ن يل ال اقبل لعلبى سب ا ال معاما اشب

ا   بد ماسبت حب بب ال , معامبل اا جبام ال ما الحبطحي ع اانب , سب ل ق العا ا الط , س ا اانتقاا الح ط

بز ح ي ال ات با فبب هب \ااضاء ال نبب ف ق ت حبر اا س ال سب ي نيب ل ت بز مالحزمب اال ح ذا التيبا  ال

يب ات اشب مبا ا  اضباء  عباما م ا هبذ ال يب اسبت ل مانجا طب ج تيا  محبتح  مبا الحزمب \الع

ف نيبب ت طبب  اال يبب  ال ببا الج ق بب اساسببا علببى التب ط ي اا تعت ا العصبب مببا الشبب ا   \اعيصببطمخ

ي  ما الجي ا  سال ا على القيم تقت لى  ما الحص عامال ذ ال ف ل ج حاا تب  مقا ن مالط ال ليبا اب

ا ق انجاع ط تائجفاعلي ت ا ما خاا ال اف ت حصل علي  ال
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Chapter 1 

Introduction 

 

Contents 

1.1 Background  ......................................................................................................................

1.2 Aim of this work  ..............................................................................................................

1.3 Thesis organization ...........................................................................................................

1.4 Thesis contributions ..........................................................................................................

chapter references  ...................................................................................................................

 

 

1.1 Background 

The investigation of electronic and optical properties of semiconductors is of 

fundamental importance as the performance of electronic devices is dictated by the 

properties of the carriers inside the materials. The scanning electron microscopy has 

proven to be an effective, useful and nondestructive technique in the characterization 

of semiconductor materials. In scanning electron microscopy, Electron Beam Induced 

current (EBIC) and Cathodoluminescence (CL) have been extensively used as an 

analytical tool in the characterization of semiconductor materials. They have been 

widely used for the investigation of crystal defects in semiconductors [1-7] and for the 

extraction of defect free region semiconductor parameters such as: absorption 

coefficient (α), diffusion length (L), dead layer thickness (Zt), relative quantum 

efficiency (Q) and the normalized surface recombination velocity (S) [8-14]. The 
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extraction of these parameters is difficult because of there nonlinear and complex 

effect on the CL/EBIC signal, and the high interaction between theme.  

The parameter extraction problem is a multi-minimum optimization problem 

[15,16] and it can be solved using several optimization techniques, which can be 

roughly classified into two categories: deterministic optimization algorithms (pseudo-

objective function substitution method (POSM)[17], Levenberg-Marquardt [18], the 

gradient descent methods [19],… ) and stochastic optimization algorithms ( simulated 

annealing method (SA) [20], simulated  1-diffusion method (SD)[21], genetic 

algorithms (GA) [22, 23]…). These methods were applied to parameter extraction of 

semiconductor devices and integrated circuits [22-32].  

Optimization algorithms tend to adjust the inputs such that the cost function, also 

known as the objective function, is either minimized or maximized (depending 

whether it is a minimization or a maximization problem). One of the largest problems 

in optimization is to determine whether the solution found is a global solution 

(corresponds to finding the global minimum/maximum) or a suboptimum solution 

(corresponds to finding the local minimum/maximum).     

The parameter extraction can be described as an optimization problem as follows: 

suppose that a process f has an output y which is a function of a set of parameters x, 

that is: y = f(x). Given a process output measurement y′, the parameter extraction 

problem is equivalent to minimizing the error function E(x) with respect to the 

process parameters x, subject to a set of constraints C. The error function E(x) is a 

general error function between y′ and f(x), that is: E(x) = E(y′-f(x)) and it represents 

the objective function to be minimized. The optimization process determines the set 

of parameters x
*
 that minimizes the objective function E(x) subject to the set of 

constraints C (i.e. the upper and lower bounds on parameters), that is: 
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subject to 

arg min ( ( ))E
 

x
C

x x  
(1-1) 

1.2 Aim of this work 

The aim of this work is to extract the defect free region semiconductor parameters 

from the EBIC/CL signals using advanced signal processing techniques. Particularly, 

we are interested in the simultaneous extraction of related semiconductor parameters 

(α, L, S, Zt, Q) from any EBIC/CL; our novel approaches are based on powerful 

modeling and optimization techniques: Artificial Neural Networks and Genetic 

Algorithms. To the best of our knowledge, no work has been reported  in this regard. 

Artificial neural networks have many desirable properties such as: their ability to 

learn by example through training, their ability to generalize and predict, and finally 

their inherent parallel computation capability.  These, characteristics suggest that they 

can be used for modeling of complex systems and processes and consequently 

motivated us to employ them for the modeling of the EBIC/CL signal generation 

process.  

At the other hand, by being able to formulate the semiconductor parameter extraction 

problem as an optimization problem, suggests that powerful optimization techniques 

can be used to find near-optimum solutions with reasonable cost.  This motivated us 

to explore the feasibility of using evolutionary optimization algorithms that exhibit 

many desirable properties such as, their moderate computational complexity and their 

excellent performance. Because genetic algorithms are the most popular evolutionary 

algorithms, we use them here for semiconductor parameter extraction.  
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1.3 Thesis organization 

The dissertation is divided into the following chapters: 

 Chapter 1 gives a brief background about the semiconductor parameter 

extraction problem, describes the aim of the dissertation and its major 

contributions to the literature.   

 Chapter 2 talks about the fundamentals of CL and EBIC in the Scanning 

Electron Microscopy. The chapter also describes the Monte Carlo 

simulation of the electron beam interactions with the semiconductor 

material. Additionally, MATLAB related codes are reported in the 

Appendix.    

 Chapter 3 contains fundamentals of Artificial Neural Networks. 

 Chapter4 contains fundamentals of Genetic Algorithms. 

 In chapter5 a new approach based on feedforward ANN and exhaustive 

search for the simultaneous extraction of related semiconductor parameters 

is developed.  

 In chapter6 a new approach for the simultaneous extraction of related 

semiconductor parameters based on feedforward ANN and inverse modeling 

is developed and described.  

 In chapter7 a new approach for the simultaneous extraction of related 

semiconductor parameters based on genetic algorithms is developed. 

 Chapter 8 consists of a conclusion that summarizes the results and the 

contributions of the dissertation, and discusses some recommendations for 

future work.     
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1.4 Thesis contributions  

The major contribution of this work resides in the introduction of new signal 

processing techniques to the field of scanning electron microscopy which opens the 

door widely to the use of these techniques in other related fields. The main 

contributions of the dissertation are summarized into the following points: 

 Development of a new approach that is based on ANN and exhaustive 

search for the simultaneous extraction of related semiconductor parameters. 

 Development of a new approach that is based on ANN and inverse modeling 

for the simultaneous extraction of related semiconductor parameters. 

 Development of a new approach that makes use of Genetic Algorithms for 

the simultaneous extraction of related semiconductor parameters.   
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Chapter 2 

Scanning Electron Microscopy Fundamentals 
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2.1 Introduction 

The Electron Microscopy [1,2,3,4] was developed due to the limitations of 

light microscopy [5], it has been an important tool for the study and analysis of 

different specimens, it permits the observation and characterization on a nanometer to 

micrometer scale.  

The Scanning electron microscopy SEM [1,2,3,4] is a type of Electron Microscopy,  it 

is one of the most widely used techniques in research and industry. Basically a beam 

of highly accelerated electrons that typically has an energy ranging from 0.5 KeV to 

50 KeV bombard a sample to be examined; When they penetrate into the sample they 

undergo interaction processes (figure2-1) that may result in the loss of energy, change 

of direction, and the creation of secondary signals (electron signals or photon signals).  



Chapter 2                                                                          Scanning electron microscopy Fundamentals 

 24 

Incident electron 

beam with energy E0

0

0
1 1, 

2 2, 

0

1

2

E0,S0

E1,S1

E2,S2

 

Figure 2-1. Schematic geometry of the initial steps of electron scatterings. 

 

2.2 Interaction of the incident electrons with the irradiated matter 

2.2.1 Physical process 

Generally, the interaction processes that undergo the incident electrons can be 

grouped in two types [6]:  

Elastic: in which only the trajectory of the incident electron changes while the 

kinetic energy and velocity remain constants. Elastic scattering results from the 

deflection of the incident electron by the positive charge of the nucleus of the atoms 

of the sample. It gives rise to high energy backscattered electrons. The cross section 

for elastic scattering obeys an inverse square dependence with the electron beam 

energy, and a squared proportional with the atomic number of the sample. 
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Inelastic: in which the incident electron lose significant and definite amount of 

energy, inelastic process occurs during the interactions of the incident electron with 

the electrons and atoms of the sample. 

A schematic illustration of the elastic and inelastic interactions is illustrated in 

figure2-2. 

elastique


inelastique


Elastic 

scattering

Inelastic 

scattering

Generated 

signal

 

Figure2-2. A schematic illustration of elastic and inelastic scattering of an incident 

electron with a sample's atom. 

 

As a consequence of the inelastic interactions a wide range of secondary 

signals are produced, Figure2-3 illustrates these signals (The directions shown doesn't 

represent the physical direction of the signal). 
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Figure 2-3. Schematic diagram of signals generated due to electron beam interaction 

with bombarded specimen. 

 

2.2.2 Function of energy dissipation 

Constantly the inelastic processes reduce the energy of a primary electron, 

finally to the point at which it is "captured". It is useful to study the energy loss of the 

incident electrons quantitatively as a function of the distance traveled and also the 

target composition (atomic number Z, atomic weight A, and density ρ). Bethe in 1933 

derived the continuous energy loss approximation for all inelastic processes, the 

energy loss per unit of distance traveled by the incident electron dE/ds (the electron 

beam suffers a mean energy loss dE in penetrating a distance ds) is given by [7, 8]:  
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42 ( )
ln

dE e aE eV
NZ

ds E J

        (2-1) 

 

where E is the kinetic energy of the electrons, e is the electron charge, N is the 

number of atom's/cm
3
, and Z is the atomic number of the sample. Bethe gave for the 

constant a=2, J is a function of the atomic number and is given by [7, 8]: 

( ) 11.5J eV Z  (2-2) 

 (2-2) can be expressed as follows: 

42 2 ( )
ln

11.5

dE e E eV
NZ

ds E Z

        (2-3) 

It is suitable to express the energy loss in the unit of KeV/ m, and in terms of the 

atomic weight and density of the target material, (2-3) becomes [7, 8]: 

174
7.83 ln

dE Z E KeV

ds AE Z m




                  (2-4) 

where, ρ(g/cm
3
) is the sample density, and A(g) is the atomic weight of the sample. 

2.2.3 Electron range 

As a result of the elastic and inelastic scatterings that the incident electrons 

undergo within the material, the original trajectories are randomized. The distance 

traveled between the point of entry and the final resting place of an incident electron 

undergoing inelastic scatterings is the Bethe range RB, it is defined from the Bethe 

equation as follows [8,9]: 

 
0

0 1

/
B

E
R cm dE

dE dS
   (2-5) 
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(2-5) overestimates the electron range because it neglects the effect of elastic 

scatterings. The effective depth to which energy dissipation extends is much 

smaller and it is known as Gruen range or penetration range Re, it is a function of 

the primary energy beam E0 and it is given by this general formula [10]: 

0( / )R K E
  (2-6) 

where ρ is the material density in g/cm
3
, K and α depends on the atomic number 

and E0. Everhart and Hoff, for example, proposed for K, α and R the values [10]:  

1.75

0( ) (0.0398/ )R m E   (2-7) 

where E0 is in KeV. 

Whereas kanaya and Okayam proposed the following expression [10]: 

0.889 1.67

0( ) (0.0276 / )R m A Z E   (2-8) 

where A is the atomic weight in (g/mol), Z is the atomic number, and E0 is in 

KeV. 

2.2.4 Generation of pairs 

The generation of electrons-holes pairs is an inelastic process escorting the 

penetration of electrons inside the semiconductor sample; we can define a function 

 ,G r R describing the distribution of generated pairs in the volume. It corresponds to 

the number of generated pairs per unit volume and unit time (cm
-3

.s
-1

) in the point 

spotted by the vector ( , , )r x y z . The parameter R here indicates the dependence on 

the energy beam.  

Virtually, we don’t need to know the explicit form of the function G but only its 

projection on a plan. If the projection of G on the plan (xy), for example, is g(z) it 
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corresponds to the number of pairs generated per unit depth per unit time. It is given 

by the following formula [8,11] : 

0( )
e h

I dE
g z

qE dz
  (2-9) 

where I0 is the incident electron beam current, q is electronic charge, Ee-h is the 

mean energy required to create an electron-hole pair, and dE is the mean energy loss 

per depth dz. 

If we normalize the mean energy loss to the energy beam, and the depth to the 

electron range we can define the depth-dose function as follows: 

0( / )
( / )

( / )

d E E
z R

d z R
   (2-10) 

The depth-dose function represents the number of electron-hole pairs generated 

per electron of energy E per unit depth per unit time 

Equation (2-9) becomes: 

0 0( ) ( / )
e h

I E
g z z R

qE R



     (2-11) 

In figure2-4 we reported the variation of the energy dissipation with the depth for 

different values of the incident energy beam using a Monte Carlo simulation (the code 

is detailed in Appendix A) in a silicon sample.  
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Figure2-4. Monte Carlo simulation of the energy dissipation in a Silicon sample using 

the slowing down approximation of Bethe for various values of the incident energy 

beam. 

 

The choice of the generation function is important to get a good accuracy for 

semiconductor parameter measurements. Various analytical generation functions have 

been published; the most famous are:   

 Everhart and Hoff have proposed for the depth-dose function a polynomial 

expression [10,12]:   

2 3( / ) 0.60 6.21( / ) 12.40( / ) 5.69( / )z R z R z R z R      (2-12) 

It is the most used because of its simplicity.  

 Wittry proposed a Gaussian function [13] 



Chapter 2                                                                          Scanning electron microscopy Fundamentals 

 31 

2

0/
( / ) exp

z R u
z R A

u
              (2-13) 

 Kyser proposed a modified Gaussian function [14]: 

2

0

0

( / ) ( / )
( / ) exp exp

z R u b z R
z R A B

u u
                    (2-14) 

where, A, u0, Δu, B, b are constants. 

The number of pairs created in the sample per unit time is the total generation 

rate G0(s
-1

) [8]: 

0
0

( )G g z dz
   (2-15) 

2.2.5 Generation volume 

The generation volume or interaction volume is the 3-dimentional space in which 

primary incident electrons have enough energy to interact with the specimen. Its 

shape and its size are controlled by both elastic and inelastic interactions: if elastic 

scatterings are the dominant interaction, electrons tend to scatter away from their 

original direction which gives "width" for the interaction volume. However if 

inelastic scatterings are the dominant interactions, electrons are less deviated; they 

penetrate into the sample along their original trajectories and lose energy as they 

penetrate.  

The two factors that can determine which interactions, elastic or inelastic, can 

dominate are the primary energy beam and the atomic number of the sample.  

As the primary energy beam increases, the incident electrons penetrate into the 

sample along a path close to their incident direction, as they lose energy by inelastic 

scatterings the probability of elastic scatterings increase so they begin deflected into 
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the sample. Figure2-5 shows a Monte Carlo simulation (see Appendix A for the 

MATLAB code) of the generation volume as a function of the energy beam.   
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figure2-5. Monte Carlo simulation showing the size of the interaction volume as a 

function of the energy beam (number of electrons is 250). 

 

Electrons entering a high atomic number sample are scattered away from their 

original directions. However in a low atomic number sample electrons penetrate into 

the sample and can lose energy by inelastic scatterings till their energy is such that the 

elastic scatterings can dominate. Figure2-6 shows a Monte Carlo simulation (see 

Appendix A for MATLAB codes) of the generation volume as a function of the 

atomic number of the target.  
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 figure2-6: Monte Carlo simulation showing the size of the interaction volume as a 

function of the atomic number (number of electrons is 250 with initial energy of 

15KeV). 
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The tilt angle, which is the angle between the sample surface and the horizontal 

plane, determines the symmetry of the interaction volume; as the sample is tilted away 

from the horizontal the interaction volume appears asymmetric. Figure2-7 shows a 

Monte Carlo simulation (see Appendix A for MATLAB codes) of the generation 

volume as a function of tilt angle. 
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 figure2-7. Monte Carlo simulation showing the interaction volume as a function of 

the tilt angle (number of electrons is 250 with initial energy of 15KeV). 

 

From figure2-5,2-6 and 2-7 we can see that the boundaries of the generation 

volume can not be well defined but only approximated. Generally the shape of the 

generation volume is approximated to one of three main shapes: pear, spherical, or 

hemispherical shape (figure2-8).   
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Electron 

beam 

(a) (c)(b)
 

Figure2-8. The three main approximations of the generation volume shape: (a) pear, (b) 

spherical, and (c) hemispherical. 
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2.3 Cathodoluminescence (CL) 

The cathodoluminescence (CL) analysis permits the evaluation of different 

properties of materials. For example; the CL spectroscopy can be used in the 

identification and measurement of luminescent center concentrations and distribution, 

the dependence of CL intensity on electron beam voltage is used to determine 

electronic properties (carrier diffusion length, surface recombination velocity…), CL 

maps can be used to find the concentration and distribution of defects 

(dislocations…).   

2.3.1 Physical phenomena 

The cathodoluminescence is the emission of photons from a solid supplied with 

electron excitation or cathode rays. As mentioned earlier, the inelastic processes 

occurring during the penetration of the incident energetic electrons in the bombarded 

sample generate electron-hole pairs, the excess carriers diffuse inside the material and 

recombine, either by radiative or nonradiative processes.  

The radiative recombination may be an intrinsic or extrinsic mechanism 

[10,15,16] : 

Intrinsic luminescence results from the recombination of electrons and holes 

across the fundamental energy gap; it is an intrinsic property of the material. In 

indirect gap semiconductors the recombination must be accompanied by the 

simultaneous emission of a photon and a phonon to conserve the momentum. A 

schematic illustration of the intrinsic luminescence in direct and indirect 

semiconductors is presented in Figure2-9.   
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Figure2-9 –Schematic illustration of intrinsic luminescence in direct (a) and indirect 

(b) semiconductors. 

 

Extrinsic luminescence results from the radiative transitions involving shallow or 

deep energy states located within the forbidden band gap in both direct and indirect 

semiconductors. A schematic illustration of the extrinsic emission is reported in 

figure2-10. 
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Figure2-10 –Schematic illustration of extrinsic luminescence: (1), (2) band-donor or 

acceptor, (3), (4) donor-acceptor. 



Chapter 2                                                                          Scanning electron microscopy Fundamentals 

 36 

2.3.2 Formation of the CL signal 

Let us consider a semi infinite homogenous n-type semiconductor, bounded by the 

top surface (figure2-11), having minority carrier (holes) diffusion coefficient and life 

time     Dp and , respectively, and surface recombination velocity vs. bombarded on 

the top surface by an electron beam of energy E0.  

Electron beam E0 (KeV)

g(r)

Generation 

volume

surface

semiconductor

x

z

vs

Dp, 

 

Figure2-11. Schematic illustration of the model employed for deriving CL signal. 

 

The generation of photons is essentially governed by the stationary excess 

minority carriers concentration p(r); which in the steady state obeys the differential 

equation given by [16,17,18]: 

2 ( )
( ) ( ) 0

p

p r
D p r g r     

 

(2-16) 

where, g(r) is the generation rate per unit volume and unit time. 

With the boundary condition at the top surface, that takes into account the surface 

recombination: 
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( )
( )

p s

dp r
D v p r

dz

      
 

(2-17) 

The generation of photons is essentially governed by the stationary excess 

minority carriers’ concentration p(r).  

( )
CL

rV

p r
I dV  

 

(2-18) 

After radiative recombination occurs the emitted photons propagate inside the 

semiconductor, due to optical absorption and reflection losses not all generated 

photons are emitted; only a fraction of them is coming out from the material. Thus   

the total CL intensity; which is the number of photons emitted per unit time; is given 

by [10, 19, 20]: 

( )
( )

CL

rV

p r
I F z dV   

 

(2-19) 

where, r is the radiative recombination lifetime of the minority carriers, and F  is the 

correction function for optical absorption and reflection losses.  

2.3.3 Calculation of the CL signal using Hergert et al model  

Many models were proposed for the calculation of the cathodoluminescence 

signal, using analytical approach [10, 20, 21, 22] or using Monte Carlo simulation 

[25]. We choose the model of Hergert et al [22-23-24] because of its simplicity. The 

details of that model are given now. 

In this model the equation (2-19); which is the current of photons modified by the 

internal absorption of the luminescence radiation; is written as follows: 
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/ cos

0

( )
2 sin

c

z

CL

rV

p r
I d e dV


        

 

(2-20) 

where θc is the critical angle of the total reflection, and α is the absorption 

coefficient of the semiconductor. 

The minority carrier density in (2-20) is obtained from the continuity equation 

in cylindrical coordinates: 

2

2 2

1 1 1
( , )

p p
r p g r z

r r r z L D

             
 

(2-21) 

The boundary conditions for the geometry of semi infinite semiconductor of 

figure2-11 are as follows: 

0

( 0)
p s

z

p
D p z

z



    

 

(2-22-a) 

 

( ) 0p z    

 

(2-22-b) 

 

The electron-hole pairs due to absorption of internal luminescence are not taken 

into account. 

To solve (2-21) a Hankel transform of order 0 is used; the Hankel transform and 

the inverse Hankel transform of minority carrier density are given by: 

0

0

( , ) ( , ) ( )p z p r z J r rdr    
 

(2-23-a) 

0

0

( , ) ( , ) ( )p r z p z J r d      
 

(2-23-b) 

where, J0 is the Bessel function of first kind of order 0. 
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This gives the following equation: 

2
2

2 2

1 1
( , ) ( , ) ( , )

d
p z p z g z

dz L D
           

 

(2-24) 

 (2-24) is soled using Green's function, which leads to: 

0

1
( , ) ( , , ) ( , )

4
p z G z z g z

D
  

    
 

(2-25) 

where G(z,z', ) is the Greens function of (2-24). 

with: 

0

0

1
( ) ( )rdrJ r   

   
 

(2-26) 

where δ is the Dirac delta function. 

Equation (2-20) becomes as follows: 

/ cos

0 0 0

sin ( , ,0) (0, )
c

z

CL

r

I d dz G z z g z e dz
D


   

         
 

(2-27) 

The CL signal was then expressed by a universal function which depends only 

on the depth distribution g(z) as follows: 

 1 1

0

( , ) ( )xz
x z e g z z dz

     
 

(2-28) 

and the CL signal is then given by: 

0

2 ˆsin ( )
CL

r

I d F
   

   
 

(2-28) 

with: 

ˆ / cos    (2-29-a) 
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0

2 2

1
( ) ( , ) ,

(1 ) 1

xZt
G e Lx S

F x x Zt Zt
x L S L

                (2-29-b) 

where: 

 G0 is the total generation rate of the minority carriers. 

  /( )
nr r nr r

       is the total life time with nr and r are the non radiative 

and radiative life time of the semiconductor, respectively.  

 L is the diffusion length of the excess minority carriers. 

 g is the depth distribution function of the generation rate. 

 Z is the distance from the surface. 

 S is the normalized surface recombination velocity given by: S= Vs/Vd. 

where Vs is the surface recombination velocity and Vd is the diffusion 

velocity given by: Vd=L/ . 

The depth distribution of the energy dissipation is of Wu and Wittry, it is the 

modified Gaussian approximation of Kyser[14] reported in (2-14). It can be written 

as: 

2

0

0

( ) exp exp
u u bu

u A B
u u

                   
 

(2-30) 

where: u=ρZ/R , ρ(g/cm
3
) is the density of the semiconductor material and Z is the 

depth. 

The electron range R is: 

3
1.7

0

2.56 10
( ) ( ( ) / 30)R cm E KeV

  
 

(2-31) 

For GaAs: u0=0.125, Δu=0.350, b=4, and B/A=0.4, the atomic number is 32, 

and the critical angle is 16
0
. Figure2-12 illustrates CL signals calculated using the 

approach described before.  
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Figure2-12. CL signal calculated using the model of Hergert et al with a Wu and Wittry 

generation rate for a GaAs semiconductor: (a) dependence on diffusion length L, (b) 

dependence on dead layer thickness Zt, and (c) dependence on absorpetion coefficient α.    
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2.4 Electron beam induced current EBIC  

The electron beam induced current (EBIC) technique allows examining 

semiconductor materials and looking for features such as crystallographic defects, as 

well as giving information about the semiconductor parameters that characterize the 

material such as the diffusion length and the surface recombination velocity. 

2.4.1 Physical phenomena 

As mentioned earlier, the inelastic processes occurring during the penetration of 

the incident energetic electrons in the bombarded sample generate electron-hole pairs, 

the excess carriers diffuse inside the material, when the semiconductor sample 

contains internal electric field (p-n junction or Schottky junction) the charge carriers 

are separated by that field and minority carriers can therefore reach the junction by 

diffusion this results in a charge-collection current or electron beam induced current 

EBIC, which can be amplified and measured externally when an external circuit is 

connected to the ends of the junction. 

The EBIC can be performed in one of two modes:  

 Planar configuration in which the junction (p-n junction or Schottky 

junction) is perpendicular to the electron beam. 

 Cross sectional or normal configuration in which the junction (p-n junction 

or Schottky junction) is parallel to the electron beam. 

These configurations are illustrated in figure2-13.  
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Figire13. Different configurations used for EBIC measurements, the shades area 

represents the built-in potential: (a) and (c) are normal configurations, (b) and (d) are 

planar configurations. 

 

2.4.2 Calculation of the EBIC current in a normal-collector p-n junction 

configuration 

One of the most used configurations is the normal p-n configuration, the electron 

beam scanned over the surface and the steady state EBIC is measured as a function of 

the distance xb between the junction and the beam position (figure2-14.). 
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Figure2-14. Normal collector configuration of a p-n junction, with x distance between 

the beam and the junction. 

 

2.4.2.1 The charge collection probability of Donolato 

The model of Donolato [27] for the charge collection probability which is the 

EBIC due to a point source is detailed in this section. 

In this model the presence of the back surface of the diode is neglected (sample 

thickness considered infinite) and the transport of the minority carriers generated by 

the electron beam in the neutral material (n type) is described by the steady state 

diffusion equation (2-16) [27]. 

According to [27], the configuration of figure2-14 has translational invariance 

along the y axis, in the sense that the contribution to the collected current of any 

source element doesn’t depend on its y coordinate. Thus the collected current depends 

only on the projected generation on the xz plane:    

( , ) ( , , )g x z g x y z dy




   

 

(2-32) 
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Equation (2-16) becomes: 

2 ( , )
( , ) ( , ) 0

p

p x z
D p x z g x z     (2-33) 

The boundary conditions on the surface and at the junction plane are: 

0 at   0

. at   0

p x

p
S p z

z

   
 

   (2-34-a) 

   (2-34-b) 

with S the normalized surface recombination velocity. 

The solution of (2-33) is then: 

0 0

( , ) ( , ) ( , , , )p x z dx g x z G x x z z dz

             (2-35) 

where G(x,x',z,z') is the Green's function for equation (2-33) satisfying the 

boundary conditions (2-34). 

The charge collection probability i(x',z') at a point (x',z') is : 

0

0

( ', ') |
x

G
i x z D dz

x




      (2-36) 

Finally Donolato calculated the charge collection probability as follows: 

2

0

2
( , ) exp( ) exp( )sin( )

( )

S k
i x z x z kx dk

S
   

        (2-37) 

where =1/L , L is the diffusion length of minority carriers, k is a constant, and 

=(k2+ 2
)
1/2

. 

For more details about calculation of (2-37) the reader is referred to [27]. 

2.4.2.2  Calculation of the EBIC current 

The approach proposed in [28,29] is used for the calculation of the EBIC 

profiles: 
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First, the current is divided into three regions as proposed by Czaja [28]: the n-

region, the depletion region, and the p-region. In each region the current is a 

convolution of the generation volume distribution g(x,z) and the charge collection 

probability i(x,z) with the assumption that the charge collection within the depletion 

region is unity. The EBIC current when the beam is located at a point x' is then given 

by: 

0 0

0

( ) ( , ) ( , ) ( , )

( , ) ( , )

pn

n

p

xx

x

x

I x g x x z i x z dxdz g x x z dxdz

g x x z i x z dxdz

 


 

     

 
   
 

 

  (2-38) 

where: xn and xp are the edges location of the depletion region and the x axis in (2-

37) starts from the depletion region edge.  

Then, a generation volume distribution proposed by Donolato is used to calculate 

the EBIC profiles, it is given by [28,29,30]: 

 
2

2 2

( / )
( ) exp

2 , 2 ( , )

z R r
g r

R z R z R


  

        (2-39) 

where: 

 R is the electron range related to the energy beam as follows: 

1.75
2 0 ( )

( ) 4 10
E KeV

R m      (2-40) 

 ρ(g/cm3
) is the density of the sample. 

 2
 is the standard deviation of the Gaussian distribution given by: 

2 2 3( , ) 0.36 0.11 /z R d z R    (2-41) 

 d is the beam diameter. 
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 ( / )z R is the depth distribution, it follows the polynomial of Everhart and 

Hoff: 

2 30.6 6.21( / ) 12.4( / ) 5.69( / ) 0 / 1.1
( / )

0 / 1.1

z R z R z R z R
z R

z R
          (2-42) 

According to (2-32) the equation (2-39) becomes: 

2

2

( / )
( , ) exp

22

z R x
g x z

R


 

       (2-42) 

Figure2-15 illustrates EBIC profiles in a normal collector configuration 

calculated using the approach described above. The sample material is silicon (density 

of 2.33 g/cm
3
), and the beam radius is of 10 nm. 



Chapter 2                                                                          Scanning electron microscopy Fundamentals 

 48 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

-0.15

-0.1

-0.05

0

0.05

 

 

L=1 m, S=0

L=3 m, S=0

L=10 m, 

S=0

L
n

(I
) 

(a)

Xb ( m)

0 0.1 0.2 0.3 0.4 0.5
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

 

 

S=2, L=3 m

S=5, L=3 m

S=10, L=3 m

L
n

(I
)

(b)

Xb( m)
 

Figure 2-15- EBIC profiles for the region around the edges of a depletion layer located 

at  0.3μm: (a) different values of the diffusion length L (S=0), (b) different values of the 

surface recombination velocity (L=3μm). 

 

 

 

 

 

 

 

 



Chapter 2                                                                          Scanning electron microscopy Fundamentals 

 49 

Chapter references 

1- I. M. Watt, "The principles and practice of electron microscopy", Cambridge 

University Press, 2
nd

 edition 1997. 

2- D. B. Williams, C. B. Carter, "Transmission electron microscopy a textbook 

for materials science", Springer 2
nd

 edition 2009. 

3- S. J. B. Reed, "Electron Microprobe Analysis and Scanning Electron 

Microscopy in Geology ", Cambridge University Press 2
nd

 edition 2005. 

4- L. Reimer, H. Kohl, "Transmission Electron Microscopy, physics of image 

formation", Springer 5
th

 edition 2008. 

5- R. Oldfield, "Light Microscopy an illustrated guide", Wolfe Publishing 1994. 

6- D. A. Newbury, D. C. Joy, P. Echlin, C. E. Friori, and J. I. Goldstein, 

"Advanced scanning electron microscopy and X-ray microanalysis", Plenum 

Press, New York, 1986. 

7- W. Williamson, Jr. and G. C. Duncan, "Monte Carlo simulation of 

nonrelativistic electron scattering" Am. J. Phys, 54(3), March 1986. 

8- N. Tabet, ''Contribution a l'étude des propriétés électriques de volume et des 

joints de grains dans le germanium application de la méthode du courant induit 

par faisceau d'électrons EBIC", a thesis submitted for the degree of Doctor of 

Philosophy, university of Paris Sud, Centre d'Orsay, 1988. 

9- Course note:"Electron Microprobe Analysis by wavelength dispersive X-ray 

spectrometry", MIT Electron Microprobe Facility.  

10- B. G. Yakobi, D. B. Holt, "Cathodoluminescence microscopy of inorganic 

solids", Plenum Press, New York, 1990. 

11- G. Thomas, "Electron microscopy and structure of materials: proceedings", 

University of California Press, 1972. 



Chapter 2                                                                          Scanning electron microscopy Fundamentals 

 50 

12- J. Jimenez, "microprobe characterization of optoelectronic material", Taylor & 

Francis, 2003. 

13- S. Tanuma, K. Nagashima, "Evaluation of an improved absorption correction 

based on the Gaussian ionization distribution model for quantitative Electron 

Probe Microanalysis", Mikrochimica Acta [Wien] , 299-313, 1983. 

14- E. Napchan, "Electron and Photon matter interaction :energy dissipation and 

injection levels", Revue de Physique Appliqué, colloque C6, supplément au n
0
 

6, tome 24, juin 1989.  

15- C. Lamberti, "Characterization of semiconductor heterostructures and 

nanostructures", Elsevier, Oxford, UK 2008. 

16- S. M. Sze, and K. K. Ng, "Physics of semiconductor devices", Wiley, 3
rd

 

edition, 2007. 

17- D. Donolato, "On the theory of SEM charge-collection imaging of localized 

defects in semiconductors", Optik, 52(1978/79), No.1, 19-36.   

18- F. Berz, and H. K. Kuiken, "Theory of life time measurements with the 

scanning electron microscope: steady state", Solid State Electronics, vol.19, 

pp.437-445.  

19- A. Jakubowicz, "Transient cathodoluminescence of semiconductors in a 

scanning electron microscopy", Journal of applied physics. 58(11), pp 4354-

4359, Dec 1985. 

20- A. Jakubowicz, "Theory of cathodoluminescence contrast from localized 

defects in semiconductors", Journal of applied physics. 59(6), pp 2205-2209, 

March 1985.  



Chapter 2                                                                          Scanning electron microscopy Fundamentals 

 51 

21- T. S. Rao-Sahib and D. B. Wittry, "Measurment of diffusion lengths in p-type 

Galium Arsenide by electron beam excitation", Journal of applied physics. 

40(9), pp 3745-3750, 1969.  

22- W. Hergert, S. Hildebrandt, L. Pasemann, "Theoretical investigations of 

combined EBIC, LBIC, CL and PL experiments", Phys. Status. Solidi, (a) 102, 

819(1987). 

23- W. Hergert, and L. Pasemann, "Theoretical study of the information depth of 

the cathodoluminescence signal in semiconductor materials", Phys. Status. 

Solidi, (a) 85, 641(1984). 

24- W. Hergert, P. Reck, L. Pasemann, and J. Schreiber, "Cathodoluminescence 

measurements using the scanning electron microscope for the determination of 

semiconductor parameters", Phys. Status. Solidi, (a) 101, 611(1987). 

25- J. C. H. Phang, K. L. Pey, D. S. H. Chan, "A simulation model for 

cathodoluminescence in the Scanning Electron Microscopy". IEEE 

transactions on electron devices, vol 39(4), Apr 1992. 

26- C. J. Wu, D. B. wittry, "investigation of minority-carrier diffusion lengths by 

electron bombardment of Schottky barriers". J. App. Phys, Vol. 49. (5). May. 

1978. 

27- C. Donolato, "On the analysis of diffusion length measurements by SEM", 

Solid State Electronics, Vol. 25, No. 11, pp. 1077-1081, 1982. 

28- Kurniawan. O, Ong. V. K. S, "Choice of generation volume models for 

electron beam induced current computation", IEEE Transactions on Electron 

Devices 56(5), 1094-1099, 2009. 



Chapter 2                                                                          Scanning electron microscopy Fundamentals 

 52 

29- O. Kurniawan , "device parameters characterization with the use of EBIC", 

Phd thesis (supervisor Pr O. V. Ong), Nanyang Technological University, 

2008.  

30- Nouar. Tabet, "Contribution a l'étude des propriétés électriques de volume et 

des joints de grains dans le germanium application de la méthode du courant 

induit par faisceau d'électrons EBIC", Phd thesis, University of  Paris Sud 

centre d'Orsay. 

 



Chapter 3                                                                                                         Artificial Neural Networks 

 53 

Chapter 3 

Artificial Neural Networks 

 

Contents 

3.1 Introduction .......................................................................................................................

3.2 The neuron ........................................................................................................................

3.3 Neural network topology ................................................................................................

3.4 Feedforward network ................................................................................................

3.5 The learning process..........................................................................................................

3.6 The learning algorithm ................................................................................................

3.7 ANN for function approximation ......................................................................................

Chapter references ...................................................................................................................

 

3.1 Introduction 

Artificial neural networks ANN are mathematical creations inspired by the 

structure and performance of our biological neural networks, but they can not reach 

anywhere near there performance [1]. They have seen an explosion of interest over 

the last few years and received a lot of attention and are being successfully applied 

across a huge range of problems. They gained a wide spread into many applications 

including parameter extraction of semiconductor devices and integrated circuits. This 

is mainly due to many desirable characteristics they exhibit and which can be roughly 

summarized into the following points:  

1. ANNs are able to learn by examples through training, that is, given a set of 

input/output training data, the ANN is able to extract the functional 

relationship between the input and the output data. 
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2. ANNs have the ability to generalize and predict, that is, the ANN is able to 

respond to input that have not been seen before as well as responding to 

incomplete or partial input data. 

3. Due to the internal structure of the ANN, the computations are performed 

in parallel in each layer which offers significant reduction in computation 

time.  

An ANN is defined as a massively parallel distributed mathematical model or 

computation model that has a natural propensity for storing experiential knowledge 

and making it available for use. It resembles the human brain in two aspects: 

knowledge is acquired by the network through a learning process, and interneuron 

connection weights known as synaptic weights are used to store the knowledge. 

3.2 The Neuron 

A biological neuron is the fundamental unit of our biological nervous system it 

consists of [1]: 

 A cell body or soma.  

 Nerve fibers called dendrites associated with the cell body; they 

receive signals from other neurons. 

 A single long fiber called axon that branches into connections to other 

neurons. 

We can consider an artificial network as a very simplified model of the 

biological neural network, the basic building block of an ANN is the neuron. It is 

the information-processing unit which is fundamental to the operation of an ANN. 

A typical artificial neuron has more than one inputs and only one output as shown in 

figure3-1 [2].  
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A typical artificial neuron, as described by figure3-1 consists of [1,2,3]: 

 Input signals xi. 

 Synaptic weights wi: they are factors that weight each input xi. 

 Summing junction in which the linear combiner output is calculated as [2]: 

all inputs

i ia w x   (3-1) 

 An activation or transfer function  . 

 A threshold or bias  : it has the effect of lowering (negative bias) or 

increasing (positive bias) the net input of the activation function.  

 The neuronal output is then: 

( )y a    (3-2) 
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Figure3-1 – Biological neuron (a), and an artificial neuron (b). 
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The pair of equations (3-1) and (3-2) is the mathematical description of the neuron.   

There are several types of activation functions, the basic types are [2]: 

1. Threshold function; for this type shown in figure3-2-a we have: 

1 if 0
( )

0 if 0

a
a

a
     (3-3) 

2. Piecewise-linear function. This type, depicted in figure3-2-b, is defined as 

[2]: 

 

min

min max

max

0 if

( ) if

1 if

a a

a m a b a a a

a a


     

 (3-4) 

3. Sigmoid function. This type which has an "S" shaped graph is the most 

used one. An example of the sigmoid function is depicted in figure3-2-c it 

is the logistic function [2] defined by: 

1
( )

1 exp( )
a

a
     (3-5) 

where β is the slope parameter of the sigmoid function. 

The activation functions above range from 0 to +1, they can range from -1 

to +1. 

1

2

 (a)

a

(a) (b) (c)

 

Figure3-2 – Types of activation functions: (a) Threshold function, (b) Piecewise-linear 

function, (c) Sigmoid function. 



Chapter 3                                                                                                         Artificial Neural Networks 

 57 

3.3 Neural Network topology 

Artificial neural networks are practical only when the processing units 

(neurons) are structured in appropriate manner to accomplish a given task. 

 ANNs are in general organized into layers of processing units; the units of a 

layer are similar in the sense of having all the same activation dynamics and output 

function.  

Connections can be made from the units of one layer to the units of another 

layer it is an "interlayer connections", or among the units within the same layer it is 

an "intralayer connections", or both.  

Further, the pattern of connections and the propagation of data can be in a 

"feed-forward" or "feedback" manner:  

Feed-Forward networks, for this type, neurons are organized into layers that have 

connections between them only in one direction from input units to output units. 

Feedback or recurrent networks, contrary to the feed-forward networks, the data 

can travel in both directions, all possible connections between neurons are allowed. 

We are interested in our work to the first type: the feedforward networks, its 

description is detailed below. 

3.4 Feedforward networks 

3.4.1 Single layer feedforward network 

It is the simplest form; we have an input layer of neurons (source nodes) that 

project directly in an output layer of neurons (computation nodes) as illustrated in 

figure3-3. The input layer is not counted because no computation is performed 

there. 
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Figure3-3- Feedforward network with a single layer. 

 

3.4.2 Multilayer feedforward network  

The multilayer feedforward network (figure3-4) is an important class of neural 

networks. We have an input layer of neurons (source nodes), one or more layers of 

neurons called hidden layers, and an output layer. The signal or the data propagates 

through the network in a forward direction, on a layer by layer basis [2].  
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Figure3-4- Typical feedforward network with two hidden layers and an output layer. 
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3.5 The Learning Process 

The ability of ANN to learn is a fundamental characteristic, the learning 

process in ANN can be viewed as the problem of updating the connection weights and 

the biases so that the network can efficiently perform a task. To understand or design 

a learning process we need to know:  first, learning paradigm or learning set which is 

the information available to the network, second, learning rules which is how the 

weights are updated. Third, the learning algorithm which is the procedure in which 

learning rules is used for adjusting the weights. 

The learning can be: 

A supervised learning; it is like learning with a teacher in which the network is 

provided with a correct answer (output) for every input pattern in the training data 

set. 

An unsupervised learning; it is like learning without a teacher the network doesn't 

require a correct answer (output) for every input pattern in the training data set. 

A hybrid learning; this is a combination of the supervised and unsupervised 

learning. 

3.6 The Learning algorithm 

As revealed above, the learning algorithm is the procedure in which learning 

rules are used to adjust the weights in an orderly way so as to attain a desired 

objective or task. Different types of learning algorithms have been developed for 

supervised learning (least mean squares LMS algorithm and Backpropagation (BP) 

algorithm) and unsupervised learning (Hebbian learning and competitive learning). 
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For the supervised learning we will talk about two algorithms that are the most 

popular and the most used [3,4]: the BP algorithm and the Levengerg Marquardt 

(LM) algorithm.  

Since we used the LM algorithm in this work, only a brief introduction to the BP 

will be provided here, for more details the reader is referred to [3,4],   

3.6.1 The Backpropagation Algorithm 

The Backpropagation algorithm (BP) appears to be a popular algorithm used 

for feedforward networks. The BP is an iterative gradient based algorithm that 

minimizes an error between the actual output of the network and the desired output. 

It can be summarized into the following steps: 

Step1- The network is initialized by setting up all the weights to small random 

numbers. 

Step2- The input pattern is applied and the output is calculated this is called 

forward pass, since the weights are random, the calculation gives an output 

completely different to the desired one (the target). 

Step3- The error of each neuron is then calculated as: desired output – actual 

output. 

Step4- This error is then used mathematically to change the weights in such a way 

that the error will get smaller, i.e. the output of each neuron will get closer to its 

target this is called the reverse pass. 

Step5- The process is repeated until the error is minimized 

The BP has some many disadvantages; the most known ones are: 
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 Slow convergence: compared to other training algorithms, the BP exhibits 

a slow convergence behavior. This is mainly because it is gradient descent 

algorithm and doesn’t exploit the second derivative information to 

accelerate the convergence speed.    

 Convergence to a local minimum: because it is a gradient descent 

algorithm, it will always follow the direction of the negative of the 

gradient and therefore this will not guarantee finding the global minimum 

of the error surface which is in general a multiminima function.. 

3.6.2 The Levenberg Marquardt algorithm 

The Levenberg Marquardt (LM) algorithm is an approximation to the Newton 

method, the last approximates the error of the network using a second order derivative 

expression (in contrast with the BP that does it with a first order derivative 

expression). The LM is the most popular algorithm for solving non linear least square 

optimization problems.  

For ANN training the objective function is an error function given by: 

 21
2

1

p

k k
k

E y y    (3-6) 

where: k
y and k

y are the actual and the desired output, respectively, for the k
th

 

pattern. And p is the total number of training patterns.  

 The training using an LM algorithm consists of the following steps [3]: 

Step1- Presenting all the inputs to the network and computing the 

corresponding network outputs and errors. Then calculate the mean square error 

from (3-6) 
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Step2- Calculating the Jacobian matrix J(w) of the weights. 

Step3- Solving the LM weight update equation as: 

1

( ) ( ) ( )T T

rw J w J w I J w E       (3-7) 

where: 

J
T
(w)J(w) is the Hessian matrix.  

I is the identity matrix. 

μ is the learning parameter. 

Er is the error vector of size p given by: 
1 1,.....,

T

r p p
E y y y y     . 

Step4- Calculating the error using the updated weights  w+Δw: 

 If the new error is smaller than that calculated in step 1→ reduce the 

training parameter μ and → go back step 3. 

 If the error is not reduced → increase the training parameter μ and → go 

back step 3. 

Step5- The algorithm is converged when the norm of the gradient is less than 

some predetermined value, or when the error has been reduced to some error goal. 

3.7 ANN for function approximation 

The function approximation is the task of interest in this work. Let's consider a 

nonlinear functional relationship: 

( )FY X  (3-8) 

where the vector X is the input and the vector Y is the output.  
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The function F is assumed to be unknown, what is known is a set of 

input/output data pairs obtained by applying a set of data inputs to this unknown 

function and recording the outputs, that is: 

  , 1,i ix y i p   (3-9) 

   The target is to design a neural network that approximates enough the 

unknown function F. Two main applications of function approximation are system 

identification and inverse modeling, these applications are detailed below [2]:  

3.7.1 System identification 

The ANN is trained by the set of examples (3-9), lets 
i

y  be the actual output 

of the neural network calculated in response to the input 
i

x . The difference 

between 
i

y  (associated with 
i

x ) and 
i

y  gives the error signal 
i

e (figure3-5). This 

error signal is used to minimize the squared difference between the output of the 

unknown system Y and the ANN output Y  in a statistical sense over the entire 

training set. 

X

Y

Error e

_

+
ANN Y

 

Figure3-5- ANN system identification 
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3.7.2 Inverse modeling  

The requirement here is to build an inverse model that produces X  in response 

to Y  as: 

1( )F
X Y  (3-10) 

where F
-1

 denotes the inverse of F. 

The roles of xi and yi are interchanged: yi used as input, and xi as desired output 

and ei is the error between xi and 
i

y . ei is used to minimize the squared error 

between the output of the unknown inverse system and the ANN output in statistical 

sense over the entire training set (figure3-6).  

 

Process

+ -

Xtrain Ytrain

Error 

e

ANN

 

Figure3-6- ANN inverse modeling 
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4.1 Introduction 

Recently, genetic algorithms (GA) [1] have appeared as an effective search 

method to find good near-optimal solutions to complicated problems. GA are widely 

used in business, science and engineering. GA is an optimization search technique 

based on the principles of genetics and natural selection, initially developed by John 

Holland in 1970s. GA optimization starts with a set of solutions called population, 

each solution in the population is presented by a vector called chromosome (or 

individual), and each variable in the chromosome is called a gene. The population 

evolves under specified rules to a state that minimizes the cost function. 

A GA can find good solutions in vast search spaces with a reasonable 

computational cost due to its characteristics such as [1,2]: 

1. GA doesn't require derivative information. 

2. Simultaneously searches over a wide search space. 

3. Well suited for parallel computers due to its inherent parallelism. 



Chapter 4                                                                                                                     Genetic Algorithms 

 67 

4. Can escape from local minima. 

4.2 The GA operators 

The simplest form of a GA involves three main operators [1,2,3]: 

4.2.1  Selection 

 The selection is the first operator applied on a population to make the decision of 

which chromosomes are fit enough to survive and reproduce new chromosomes or 

offspring in the next generation. There are different methods (functions) how to 

select the best chromosomes [1,2]: roulette wheel selection, Boltzman selection, 

tournament selection, rank selection, steady state selection, just to name a few. 

4.2.2  Crossover 

This operator is the process that combines or mates two chromosomes "parents" to 

produce a new "child chromosome" or offspring which is some combination of 

them. The new chromosome may be better than both the parents if it takes the best 

characteristic from each of the parents. The crossover occurs during evolution 

according to a crossover probability defined by the user. There are many types of 

crossovers: one point, two points, uniform, arithmetic, and others.  

4.2.3 Mutation 

This operator is the random change in some of the genes in order to force the GA 

to explore other areas of the cost surface and avoid the problem of early 

convergence at local minimum. This operator introduces diversity in the 

population whenever the population tends to become homogenous due to repeated 

use of reproduction and crossover. The probability that a gene may become 

mutated is called the mutation probability.  
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4.3 The GA parameters 

The GA parameters related to the GA operators and stopping criteria used in this 

work can be summarized as:  

4.3.1 Population options   

 The chromosome length:  specifies the number of variables used to 

optimize the objective function. 

 Initial population size: specifies the number of chromosomes in the 

initial generation. Using a large population size the GA searches the cost 

surface more carefully which reduce the chance of returning a local 

minimum, however with a large population size the GA runs slowly.    

 Creation function: specifies the function that is used to generate the 

initial population. In our work the creation function is a Uniform 

distribution one; it creates a random initial population with a uniform 

distribution.   

4.3.2 Fitness scaling options  

These options permit the conversion of the raw fitness scores that are returned 

by the fitness function to values in a range that is suitable for the selection 

function. 

 Fitness scaling function: in our work the fitness scaling function was a 

Rank one; this function scales the raw scores based on the rank of each 

individual instead of its score (The rank of an individual is its position in 

the sorted scores). Rank fitness scaling removes the effect of the spread of 

the raw scores. 
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4.3.3 Selection options  

Selection options specify how the genetic algorithm chooses parents for the next 

generation  

 Selection function: In our work, the selection function is the roulette 

wheel; it selects parents by simulating a roulette wheel (the area of the 

section of the wheel corresponding to an individual is proportional to the 

individual's expectation). The algorithm uses a random number to select 

one of the sections with a probability equal to its area. 

 Elite count: specifies the number of individuals with the best fitness 

values in the current generation that are passed to the next generation 

without any modification. 

4.3.4 Crossover options 

 Crossover function: specifies the function used to perform crossover, in 

our work the function scattered is used; it creates a random binary 

vector, selects gene from the first parent if the vector is 1 and from the 

second parent if the vector is 0, then combines the genes to form the 

child.   

 Crossover fraction: specifies the fraction of the next generation, other 

than elite individuals, that are produced by crossover. 

4.3.5 Mutation options  

Mutation options specify how the genetic algorithm makes small random 

changes in the individuals in the population to create mutation children. Mutation 
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provides genetic diversity and enables the genetic algorithm to search a larger 

space. 

 Mutation function: specifies the function that is used to perform 

mutation. In our work the Guassian function is used; it adds a random 

number taken from a Gaussian distribution with mean 0 to each entry of 

the parent vector. The standard deviation of this distribution is 

determined by two parameters: the scale parameter, which determines 

the standard deviation at the first generation and the shrink parameter 

which controls how the standard deviation shrinks.  

4.3.6 Stopping criteria options  

The stopping criteria determine the conditions that should be satisfied to 

terminate the algorithm. For genetic algorithms, the most important stopping 

criteria are: 

 Number of generations: specifies the maximum number of generations 

the GA is allowed to achieve. 

 Stall generation: specifies the maximum number of generations for 

which the GA stops if the weighted average change in the fitness 

function value is less than another parameter called function tolerance. 

 Function tolerance: specifies the cumulative change in the fitness 

function over stall generation under which the GA algorithm stops 

running. 

For more details about the selection of the GA parameters, the reader is referred 

to [1] 
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4.4 The continuous GA algorithm 

Depending on the variables (genes) representation, a GA is [1]:  

 Binary when the variables are represented by an encoded binary string and 

works with the binary strings to minimize the cost function.  

 Continuous when no binary encoding is used, and the variables themselves are used 

to minimize the cost function. 

Since we used in this work a simple continuous GA, a detailed description of this type 

is provided here. For other types of Gas, the reader is referred to [1,3]. 

Solving an optimization problem using a simple continuous GA is performed 

through the following steps [1]:  

1. We start by defining a chromosome as an array of variables. If the 

chromosome has N variables it is written as an array of 1 N elements: 

 1 2, ,....,
N

chromosome p p p  (4-1) 

each chromosome has a cost found by evaluating the cost function f at the 

variables p1,p2,…,pN. 

1 2

( )

( , ,..., )
N

cost f chromosome

f p p p


  (4-2) 

Equations (4-1) and (4-2) constitute the problem to be solved.  

2. Defining an initial population of Npop chromosomes which is a 

pop
N N matrix of random uniformly distributed values between 0 and 1. 

The chromosomes are passed to the cost function for evaluation. 

3. The chromosomes in the initial population that are fit enough can survive 

and reproduce offspring in the next generation. The Npop costs and 

associated chromosomes are ranked from lowest cost to highest cost; the 

rest die off. This process of "selection" occurs at each iteration of the 
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algorithm and permits the evolution of the population of chromosomes to 

the most- fit elements as defined by the cost function.  

The fraction of Npop that survives for the next step is the selection rate 

Xrate, and the number of chromosomes that are kept in each generation is: 

keep rate pop
N X N   (4-3) 

of the Npop chromosome in a generation only Nkeep survive and Npop-Nkeep 

are discarded to make place for the new offspring.  

4. The most-fit selected chromosomes Nkeep pair or mate in some random way 

as parents and each pair produces two offsprings that are in fact some 

combination of them. 

5. To avoid the fast convergence of the GA algorithm before sampling the 

whole cost surface, which can end up in a local minimum; the algorithm is 

forced to explore other areas of the cost surface by randomly introducing 

changes in some of the variables through the "mutation" operator 

6. The process described previously is iterated until a satisfactory solution is 

found  

A   summary of a simple continuous GA is provided below: 

 Step1: define variables, GA parameters and options. 

 Step2: define the cost function or objective function. 

 Step3: a set of initial solutions (population of chromosomes) is generated 

randomly over the search space.  

 Step4: each chromosome in the population is passed to the cost function for 

calculating its fitness.   

 Step5: a new population of chromosomes (next generation) is then created 

using the three operators: 
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o Selection. 

o Crossover. 

o Mutation. 

 Step6: replace the current population with the new one. 

 Step7: go to step3. 

 This is repeated until some condition (for example number of populations or 

improvement of the best solution) is satisfied. 
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5.1 Introduction 

To the best of our knowledge, no work has been reported regarding the use of 

Artificial Neural Networks (ANN) in semiconductor parameter extraction from 

EBIC/CL signals. In this chapter a new technique based on ANN is presented and 

discussed; The ANN is used here for function approximation or in other words for the 

identification of the EBIC/CL signal generation process given a set of input 

parameters characterizing the EBIC/CL signal generation (see chapter3 paragraph 3-

7). After the identification of the EBIC/CL signal generation process using an ANN, 

the latter is used to generate extra EBIC/CL signals by exploiting the generalization 

property of ANNs and finally an exhaustive search algorithm is used to perform 

parameter extraction.   
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This parameter extraction algorithm is first applied to the simultaneous 

extraction of four related semiconductor parameters, that is: diffusion length L, 

absorption coefficient α, dead layer thickness Zt, and relative quantum efficiency Q, 

from any steady state CL signal of a free defect semi-infinite semiconductor. The 

effect of noise measurement is discussed as well. Then, the parameter extraction 

algorithm is applied to the simultaneous extraction of two related semiconductor parameters 

that are diffusion length L and normalized surface recombination velocity S from any EBIC 

line scan in a normal collector configuration.  

5.2 Parameter Extraction based on ANN and exhaustive search  

Suppose that we have a nonlinear functional relationship (process) given by: 

1 2( , ... )
n

F X X XY  ; where Xi i=1,…n represents the  input vector and Y is the 

output vector (signal). The parameter extraction algorithm based on a feedforward 

ANN, and an exhaustive search technique can be summarized in the following phases:  

5.2.1 Preparation of the training and test data sets: 

To train the ANN, the training data set is prepared by sampling and stacking the 

parameters (X1,X2…Xn) into vectors as follows:
11 1,1 1,2 1,[ , ,... ]train train train train

d
X X XX , 

22 2,1 2,2 2,[ , ,... ]train train train train

d
X X XX … ,1 ,2 ,[ , ,... ]

m

train train train train

n n n n d
X X XX , where there dimensions are 

given by {1-by-d1}, {1-by-d2}…{1-by-dm} respectively. All possible combinations of 

the vectors 1 2, ...train train train

n
X X X  form the input training data set Xtrain  of dimension {n-

by- d1× d2×…dm}. For each column of Xtrain  the Y signal is calculated/measured. The 

results are stored in another matrix Ytrain  (output training data set).  

For the test data set the parameters (X1,X2…Xn) are sampled and stacked into 

vectors by taking the mid-value between each two successive values of the training 
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set: 
11 1,1 1,2 1, 1[ , ,... ]test test test test

d
X X X X , 

22 2,1 2,2 2, 1[ , ,... ]test test test test

d
X X X X … 

,1 ,2 , 1[ , ,... ]
m

test test test test

n n n n d
X X X X . The dimensions of the vectors 1

testX , 2

testX … test

n
X are 

given by {1-by-(d1-1)}, {1-by-(d2-1)}… {1-by-(dm-1)}, respectively.  All their possible 

combinations form the input test data set Xtest of dimension {n-by-(d1-1)× (d2-1)… 

× (dm-1)}. For each column of the matrix Xtest , the Y signal is calculated/measured  

and the results are stored in a matrix Ytest (output test data set). 

5.2.2 Training the ANN algorithm: 

The ANN is trained to learn the functional relationship f between the input data set 

Xtrain  and the output data set Ytrain (see § 3-7 in chapter 3), that is: 

 X Y
ftrain train

                                                                         (5-1) 

where the ANN receives the input data set Xtrain and calculates the actual output data 

set Yactual which is then subtracted from the desired output data set Ytrain resulting in 

an error e. The latter is then used to update the ANN weights. This process is 

repeated a number of epochs till the error (sum squared error SSE) goes beyond a 

predefined threshold, the SSE is given by the following formula [1] : 

2

1

( )

train
k

train actual

j j

j

SSE Y Y


   (5-2) 

where k
train

 represents the number of samples of  Ytrain . 

5.2.3 Testing the ANN algorithm 

Once the ANN has been trained, its ability to generalize is tested by applying a 

new set of input values Xtest  not seen before. The signal Ytest
calculated by the 

ANN is then compared to the desired data set Ytest and the sample-by-sample 
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percentage error between Ytest and Ytest
 is calculated using the following formula 

[1]: 

, ,

,

,

100

test test

i j i j

i j test

i j

e
 Y Y

Y
 (5-3) 

where i and j indicate the i
th

 row, j
th

 column of the matrices Ytest and Ytest
, 

respectively. 

5.2.4  Oversampling of the signal using ANN 

The main feature of ANNs that will be exploited is their ability to generalize, 

hence this property is used to obtain more samples (oversampling) of the Y signal. 

This comes with a low computation load compared to the case of obtaining these extra 

samples by experimentation. 

 In this phase, the output Yover
calculated by ANN is compared to the desired 

data output Yover and the sample-by-sample percentage error between Yover  and 

Yover
is then calculated using (5-3). Note that the input data matrix Xover here is 

obtained by oversampling the vectors of the training data set 1 2, ...train train train

n
X X X  where 

more values are taken between each two successive values.  

5.2.5 Parameter Extraction through exhaustive search 

After oversampling the Y signal, the parameter extraction of a set of input 

parameters is now straightforward. The procedure is as follows: the oversampled 

input data set Xover  
and the oversampled data set output Yover are used as a 

database for the exhaustive search. A randomly selected value of the signal Y:  
*

y  

obtained for example from an experiment, is selected and the Euclidian distance 

between the latter and all other columns of matrix Yover
 is calculated. The values of 
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the parameters (X1,X2…Xn) corresponding to the column of matrix Yover with the 

smallest distance are selected and considered as the extracted parameters, that is:  

*

2
1,2...

arg min
over

over

j
j K

 y Y  (5-4) 

where K
over

 is the  number of  columns of Yover . 

In order to evaluate and qualify the performance of the parameter extraction 

algorithm, a large set of randomly selected signals for which the input parameters 

(X1,X2…Xn) are known, is generated and used to test the parameter extraction 

algorithm. The percentage error between the true input parameter (nominal value) and 

the parameter determined using the proposed parameter extraction algorithm is given 

by: 

, ,

,

,

100

rand over

i j i j

i j rand

i j

e
 X X

X
 (5-5) 

We can summarize the different steps of the parameter extraction algorithm in 

table 5.1 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 semiconductor parameter extraction using Artificial Neural Networks and exhaustive search 

 79 

Table 5.1. Summary of different steps of the parameter extraction algorithm based on 

ANN and exhaustive search 

 

5.3 Application to cathodoluminescence 

  In this section we present the application of the parameter extraction 

algorithm described above to the simultaneous extraction of: diffusion length L, 

absorption coefficient α, dead layer thickness Zt, and relative quantum efficienty Q 

Step Description 

1- Preparation of the training and 

test data sets 

 

Obtain the input ( Xtrain ) and output ( Ytrain ) 

training data sets and the input ( Xtest ) and 

output ( Ytest ) test data sets, respectively, 

through theoretical calculation simulation or 

experimentation. 

2- Training the ANN Train the ANN using the input/output training 

data sets ( Xtrain , Ytrain ). 

3- Testing the ANN Test the ANN’s ability to generalize by applying 

a new input/output data set ( Xtest , Ytest ) not 

seen before. 

4- Oversampling the signal using 

ANN 

Obtain more signal samples Yover
using the 

ANN trained and tested in steps 1 and 2, 

respectively. 

5- Exhaustive search and 

parameters extraction 

Given the signal  y
*
 for which the parameters 

(X1,X2…Xn) are to be extracted, choose the 

values of the parameters ( X1,X2…Xn) 

corresponding to the column of the matrix 

Yover with the smallest distance that is : 

2
1,2...

arg min
over

over

j
j K

 y Y where K
over

 is number 

of  columns of Yover  
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from a steady state CL signal of a free defect semi-infinite semiconductor (Hergert's 

et al model; see chapter2). The effect of noise measurement is discussed here as well. 

In all the following, we consider an n-type GaAs semiconductor its critical 

angle is equal to: 16° and its atomic number is equal to: 32, and the electron beam is 

perpendicular to the surface of the semiconductor sample. 

5.3.1 Training the ANN  

The first step in the proposed algorithm is to collect the input/output data pairs 

used to train the ANN. The data were collected from the evaluation of Hergert's et al 

model described in chapter 2. However, Monte Carlo simulations and experimental 

data can be used as well to form the input/output data pairs for the training of ANN. 

The CL signal was calculated for each combination of the parameters 

, , , α L Zt Qtrain train train train for different values of the energy beam. Table5.2 details the 

values of the semiconductor parameters used to generate the CL signal and 

consequently form the input/output data pairs used for training the ANN. 

For , , , α L Zt Qtrain train train train , the values in [2] were used here as well, the value of S is 

fixed to (S=10).  
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Table5.2. Semiconductor parameters used for training (CL)   

Material Parameter 

 

Minima

l  value 

Maxima

l  value 

Samplin

g step  

size 

Number of 

samples 

Energy beam E (KeV )  10 50 10 5 

Diffusion length  L
train

(µm) 0.73 0.78 0.01 6 

Absorption coefficient  αtrain
 (µm

-1
) 0.785 0.825 0.01 5 

Dead layer thickness  Zt
train

 (µm) 0.03 0.08 0.01 6 

Relative quantum efficiency Q
train

 

(arbitrary units) 

7.15 7.45 0.05 7 

Total number of samples used for training equals: 

number of samples of L
train

×number of samples of αtrain
×number of samples of 

Zt
train

×number of samples of Q
train

 (6×5×6×7=1260). 

 

As illustrated in Table5.2, taking all the possible combinations of 

, , , α L Zt Qtrain train train train  results in a total number of samples of 1260 samples, therefore, 

1260 input/output pairs are used for training the ANN. 

A feed forward neural network consisting of one hidden layer is used, the 

hidden layer comprises 5 neurons and uses logarithmic sigmoid transfer functions 

whereas the output layer consists of 5 neurons (corresponds to the number of samples 

of the energy beam vector) and uses linear activation functions. Table5.3 illustrates the 

ANN parameters used here. The learning algorithm used here is the Levenberg 

Marquardt (see chapter 3). 
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Table5.3- ANN parameters used for training (CL)  

ANN parameters 

Number of epochs 600 

Desired goal 10
-6 

Number of hidden layers 1 

Number of neurons in the 

hidden layer 
5 

uses logarithmic sigmoid 

transfer functions 

Number of neurons in the 

output layer 

5 (number of samples of 

the energy beam) 

uses linear transfer 

functions 

 

 

The training curve of the ANN is shown in figure 5.1; the desired goal was 

achieved after 434 epochs. 
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Figure5.1 Training curve of the ANN (CL)  

 

Figure5.2 shows the percentage error between the theoretical training CL signal and 

the CL signal calculated by the ANN for five values of the energy beam. The maximal 
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percentage error for all the parameters is 0.25%, which indicates that the training is 

satisfactory. 

 

Figure 5.2 - Percentage error between theoretical training CL signal and the training 

CL signal calculated by ANN 

 

It is also instructive to observe the histogram plot of the error, as in Figure5.3. 
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Figure5.3 Probability density function PDF (bars) and cumulative density function CDF 

(solid line) of the percentage error for the training set (CL). 

 

We notice from figure5.3 that most of the errors are clustered around zero, 

indicating that the ANN is able to learn the input/output relationship effectively. 

Table5.4 details the value of the error in 95% and 100% of the samples for different 

energy beam values.  

Table5.4- Error for 95% and 100% of the training samples (CL). 

Energy beam value(KeV) 
For 95% of the samples,  

error is below 

For 100% of the samples, 

error is below 

10 0.15% 0.25% 

20 0.01% 0.016% 

30 0.009% 0.014% 

40 0.008% 0.014% 

50 0.008% 0.014% 
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From figure5.3 and table5.4 we notice that in 95% of the training cases the 

maximal error is small: 0.15% and it is 0.25% in 100% of the training cases.   

5.3.2 Testing the algorithm 

Our ANN is tested by using values of CL signal not seen before as illustrated in 

Table5.5 (taking the mid-value between each two successive values of the training 

set). 

Table5.5 -Semiconductor parameters used for testing the ANN (CL) 

Material Parameter Minimal  value Maximal  

value 

Sampling 

step  size 

Number 

of 

samples 

Energy beam (KeV ) 
10 50 10 5 

Diffusion length  L
test

(µm) 
0.73+(0.01/2) 0.78 0.01 5 

Absorption coefficient  αtest
 (µm

-1
) 

0.785+(0.01/2) 0.825 0.01 4 

Dead layer thickness  Zt
test

 (µm) 
0.03+(0.01/2) 0.08 0.01 5 

Relative quantum efficiency Q
test

 

(arbitrary units) 

7.15+(0.05/2) 7.45 0.05 6 

Total number of samples for the test equals: number of samples of L
test

×number of 

samples of αtest
×number of samples of Zt

test
×number of samples of Q

test
 (5×4×5×6=600) 

 

The total number of samples used for test is 600 samples.  

Figure5.4 illustrates the percentage error between the samples of the test CL 

signal and the CL signal calculated by ANN. The maximal percentage error for all the 

parameters is: 0.18%. 
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Figure5.4 Percentage error between the theoretical test CL signal and the test CL signal 

calculated by ANN. 

 

 

The histogram plot of the error and the CDF is shown in Figure5.5. 
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Figure5.5. PDF and CDF of the percentage error for the test set (CL). 

 

All the errors are clustered around zero in figure 5.5. 

The values of the error in 95% and 100% of the test samples for different 

energy beam values can be extracted from figure5.5, the results are reported in 

table5.6. 

Table5.6- Error for 95% and 100% of the test samples (CL). 

Energy beam value (KeV) For 95% of the samples,  

error is below 

For 100% of the samples, 

error is below 

10 0.1% 0.18% 

20 0.007% 0.014% 

30 0.006% 0.01% 

40 0.006% 0.01% 

50 0.006% 0.012% 
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We notice that in 95% of the test cases the maximal error is 0.1% and it is of 

0.18% in all the test cases, both values are small.    

5.3.3 Oversampling of CL signal 

The input parameters ranges are oversampled by taking more samples between 

each two successive training samples and used to generate the oversampled signal 

using the ANN (trained and tested before) the values of the oversampled set are 

detailed in table5.7. 

Table5.7- Semiconductor parameters used to obtain the oversampled CL signal 

Material Parameter 

 

Minimal  

value 

Maximal  

value 

Sampling 

step  size 

Number of 

samples 

Energy beam (KeV ) 10 50 10 5 

Diffusion length  L
over

(µm) 0.73 0.78 0.01/4 21 

Absorption coefficient  αover
 (µm

-1
) 0.785 0.825 0.01/4 17 

Dead layer thickness  Zt
over

 (µm) 0.03 0.08 0.01/4 21 

Relative quantum efficiency Q
over

 

(arbitrary units) 
7.15 7.45 0.05/4 25 

Total number of samples for oversampling the CL equals: 

number of samples of L
over

×number of samples of αover
×number of samples of 

Zt
over

×number of samples of Q
over

 (21×17×21×25=187425). 

 

 

The total number of input data samples used for oversampling the CL signal is 

187425. Figure5.6 represents the percentage error; the maximal percentage error for 

all parameters is of 0.25%. 
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Figure5.6 Percentage error between the theoretical oversampled CL signal and the 

oversampled CL signal calculated by ANN 

 

The histogram plot of the error is also shown in Figure5.7. 

 

Figure5.7. PDF and CDF of the percentage error for the oversampled set (CL). 
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Figure5.7 shows that all the errors are clustered around zero, the smooth 

Gaussian shape is clear here because of the large number of samples. 

From figure5.7 we detail in table5.8 the values of the error in 95% and 100% of the 

samples for different energy beam values.  

Table5.8- Error for 95% and 100% of the oversampled samples (CL). 

Energy beam value (KeV) For 95% of the samples,  

error is below 

For 100% of the samples, 

error is below 

10 0.125% 0.25% 

20 0.008% 0.018% 

30 0.008% 0.016% 

40 0.008% 0.016% 

50 0.008% 0.015% 

 

In 95% of the oversampled set the maximal error is of 0.125%, and in all cases it is 

only 0.25%.  

5.3.4 Exhaustive search 

After obtaining more outputs using the ANN trained and tested before, an 

exhaustive search procedure is used to determine the value of the oversampled CL 

signal that is the closest (in terms of Euclidian distance) to the CL signal for which we 

want to determine the input parameters (α, L, Zt, Q).   

In order to evaluate and qualify the performance of the parameter extraction 

algorithm, a large set of randomly selected CL curves for which the input parameters 

(α, L, Zt, Q) are known, is generated and used to test the parameter extraction 

algorithm. The percentage error between the true input parameter (nominal value) and 
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the parameter determined using the proposed parameter extraction algorithm is 

calculated from (5-5), and is calculated for each randomly selected CL curve. 

Figure5.8 shows the histogram plot and the CDF of the percentage error for 

each parameter. Note that 153600 randomly selected CL curves are used for testing 

the parameter extraction algorithm. 
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Figure5.8 PDF and CDF of percentage error of the parameters α, L, Zt, Q 

 

 

From figure5.8, the value of the error for each parameter for 95% and 100% of the 

cases is detailed in table5.9.  
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Table5.9- Error of the four parameters α, L, Zt, Q for 95% and 100% of the cases. 

Semiconductor 

parameter extracted 

For 95% of the cases,  

error is below 

For 100% of the cases, 

error is below 

L 3.5% 5.5% 

α 4% 5% 

Q 3% 4.5% 

Zt 4% 4.5% 

Table 5.9 shows that the proposed model is very satisfactory since the 

maximal error in extracting the parameters from 95% of the cases is just 4% and it is 

5.5% for all cases.  

5.3.5 Effect of measurement noise 

In the following, we consider the case of noisy measurements of the noisy CL 

signal by adding an additive white Gaussian noise (AWGN) signal with different 

signal to noise ratios (SNRs) to the CL signal used for training the ANN, thus the 

ANN is trained with a noisy CL signal instead of the exact CL signal generated using 

the Hergert’s model. The effect of noise on the performance of the parameter 

extraction algorithm is depicted in figures 5.9, 5.10 and 5.11 for the SNRs (dB): 10, 

20 and 30, respectively. These figures show that the performance of the parameter 

extraction algorithm in terms of the percentage error of each parameter, improves as 

the SNR increases.   
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Figure5.9. PDF and CDF of percentage error of the parameters α, L, Zt, Q with a SNR 

of 10 dB. 
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Figure5.10. PDF and CDF of percentage error of the parameters α, L, Zt, Q with a SNR 

of 20 dB. 
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Figure5.11. PDF and CDF of percentage error of the parameters α, L, Zt, Q with a SNR 

of 30 dB. 

 

5.4 Application to EBIC 

We present here the application of the parameter extraction algorithm described 

above to the simultaneous extraction of the diffusion length L and the normalized 

surface recombination velocity S from an EBIC line scan in a normal collector 

configuration (Donolato's model see chapter2). 

The material sample is chosen to be Silicon (a density of 2.33 g/cm
3
); the electron 

beam is perpendicular to the surface of the semiconductor sample. The line scans the 

region outside the junction, and the energy beam equals to 14KeV which results in an 

electron range of 1.7μm. 
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5.4.1 Training the Algorithm 

The first step is to collect the input/output data pairs used to train the ANN. 

The data were collected from the evaluation of Donolato's model described previously 

(see chapter 2). However, Monte Carlo simulations and experimental data can be used 

as well to form the input/output data pairs for the training of ANN.  

To train the ANN, the EBIC signal was calculated for each combination of the 

parameters , train trainL S . Table 5.10 details the values of the parameters used to generate 

the EBIC signal and consequently form the input/output data pairs used for training the 

ANN. For , train trainL S , the values in [3,4] were used here as well. 

Table 5.10-Semiconductor parameters used for training (EBIC) 

 

Material Parameter 

 

Minimal  

value 

Maximal  

value 

Sampling 

step  size  

Number 

of 

samples 
Beam position(µm) 6 6.9 0.2 5 

Diffusion length  L
train

(µm) 3 3.9 0.03 31 

Normalized surface recombination velocity  2 4 0.03 67 

Total number of samples used for training 31×67=2077 

 

As illustrated in Table 5.10, taking all the possible combinations of , train trainL S results 

in a total number of samples of 2077 samples, therefore, 2077 input/output pairs are 

used for training the ANN. 

A feed forward neural network consisting of one hidden layer is used, the hidden 

layer comprises 5 neurons and uses logarithmic sigmoid transfer functions whereas 

the output layer consists of 5 neurons (corresponds to the number of samples of the 

beam position vector) and uses linear transfer functions. Table 5.11 illustrates the 

ANN parameters used. The training algorithm used to train the ANN is the Levenberg 

Marquardt (see chapter 3). 
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Table 5.11- ANN parameters used for training (EBIC) 

ANN parameters 

Number of epochs 300 

Desired goal 10
-6 

Number of hidden layers 1 

Number of neurons in the 

hidden layer  

5 uses logarithmic sigmoid 

transfer functions 

Number of neurons in the 

output layer 

5 (number of samples of the 

beam position) 

uses linear transfer functions 

 

 

The training curve of the ANN is shown in figure5.12; the desired goal was achieved 

after 40 epochs. 
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Figure5.12 Training curve of the ANN (EBIC). 

Figure5.13 shows the percentage error between the theoretical training EBIC and the 

EBIC calculated by the ANN for five values of the beam position. The maximal 

percentage error for the two parameters is 0.9037%. This indicates that the training is 

very satisfactory. 
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Figure 5.13 - Percentage error between theoretical training EBIC and the training EBIC 

calculated by ANN 

 

 

The histogram plot of the error is depicted in Figure5.14. 
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Figure5.14 Probability density function PDF (bars) and cumulative density function 

CDF (solid line) of the percentage error for the training set (EBIC). 

 

 

In figure5.14 most of the errors are clustered around zero, this indicates that 

the learning is satisfactory. Table5.12 details the value of the error in 95% and 100% 

of the samples for different beam position values. 
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Table5.12- Error for 95% and 100% of the training samples (EBIC). 

beam position value(μm) For 95% of the samples,  

error is below 

For 100% of the samples, 

error is below 

6 0.3% 0.65% 

6.2 0.25% 0.55% 

6.4 0.3% 0.75% 

6.6 0.3% 0.8% 

6.8 0.4% 1.2% 

The maximal error in 955 of the training set is only 0.4% and for all the training set it 

is only 1.2%.     

5.4.2 Testing the algorithm 

Our ANN is tested using values of EBIC not seen before (mid-value between each two 

successive values of the training set) as illustrated in Table5.13. 

 

Table5.13-Semiconductor parameters used for testing the ANN (EBIC)  

 

Material Parameter 

 

Minimal  

value 

Maximal  

value 

Sampling 

step  size  

Number 

of 

samples 

Beam position(µm) 6 6.9 0.2 5 

Diffusion length  L
train

(µm) 3+(0.03/2) 3.9 0.03 30 

Normalized surface recombination velocity  S
train

 2+(0.03/2) 4 0.03 67 

Total number of samples used for training 30×67=2010 

 

The total number of samples used for test is 2010 samples. Figure5.15 

illustrates the percentage error between the samples of the test EBIC and the EBIC 

calculated by ANN, the maximal percentage error for the two parameters is1.5571%. 
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Figure5.15 Percentage error between the theoretical test EBIC and the test EBIC 

calculated by ANN. 

 

The histogram plot of the error and the CDF is shown in Figure5.16. 
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Figure5.16. PDF and CDF of the percentage error for the test set (EBIC). 

 

From figure5.16, we detail in table5.14 the values of the error in 95% and 

100% of the samples for different beam position values. 

Table5.14- Error for 95% and 100% of the test samples (EBIC). 

Beam position value (μm) 
For 95% of the samples,  

error is below 

For 100% of the samples, 

error is below 

6 1.08% 1.4% 

6.2 1.04% 1.3% 

6.4 1.1% 1.5% 

6.6 1.1% 1.5% 

6.8 1.2% 1.5% 
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 The maximal error in 95% of the test set is 1.2% and is only 1.5% in all the 

test set. 

5.4.3 Oversampling of EBIC 

The input parameters ranges are oversampled by taking more samples between each 

two successive training samples and used to generate the oversampled signal using the 

ANN (trained and tested before) are detailed in table5.15. 

Table 5.15- Semiconductor parameters used to obtain the oversampled EBIC 

 

Material Parameter 

 

Minimal  

value 

Maximal  

value 

Sampling 

step  size  

Number 

of 

samples 

Beam position(µm) 6 6.9 0.2 5 

Diffusion length  L
train

(µm) 3 3.9 0.03/4 121 

Normalized surface recombination velocity  2 2.66 0.03/4 89 

Total number of samples used for training 121×89=10769 

 

 

The total number of input data samples used for oversampling the EBIC is 10769. 

Figure5.17 represents the percentage error; the maximal percentage error for the two 

parameters is 0.9654%. 
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Figure5.17 Percentage error between the theoretical oversampled EBIC and the 

oversampled EBIC calculated by ANN 

 

 

The histogram plot of the error is also shown in Figure5.18. 
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Figure5.18. PDF and CDF of the percentage error for the oversampled set (EBIC). 

 

 

Using figure5.18 we detail in table 5.16 the values of the error in 95% and 

100% of the samples for different beam position values.  

Table5.16- Error for 95% and 100% of the oversampled samples (EBIC). 

beam position value (μm) For 95% of the samples,  

error is below 

For 100% of the samples, 

error is below 

6 0.35% 0.55% 

6.2 0.2% 0.55% 

6.4 0.35% 0.7% 

6.6 0.3% 0.7% 

6.8 0.45% 1.26% 
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The maximal error in 95% of the set is 0.45% and it is 1.26% in 100% of the set. 

5.4.4 Exhaustive search 

After obtaining more outputs using the ANN trained and tested before, an 

exhaustive search procedure is used to determine the value of the oversampled EBIC 

that is the closest (in terms of Euclidian distance) to the EBIC for which we want to 

determine the input parameters.   

Figure5.19 shows the histogram plot and the CDF of the percentage error 

calculated for each parameter using (5-5), and is calculated for each randomly 

selected EBIC. Note that 10680 randomly selected EBIC currents are used for testing 

the parameter extraction algorithm. 
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Figure5.19 PDF and CDF of percentage error of the parameters L, S 
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From figure5.19, the value of the error for each parameter for 95% and 100% 

of the cases is detailed in table5.17.  

 

Table 5.17- Error of the two parameters L, S for 95% and 100% of the cases (EBIC). 

Semiconductor parameter 

extracted 

For 95% of the cases,  

error is below 

For 100% of the cases, error 

is below 

L(µm) 1.5% 2.7% 

S 4% 8% 

 

 The maximal error in extracting simultaneously the two parameters L and S in 

95% of the cases is 4% and is 8% for all the cases; this is a good result compared to 

other results found in the literature [3-4]. 

5.5 Conclusion 

In this chapter a new model for the simultaneous extraction of related 

semiconductor parameters is presented it is based on artificial neural networks (ANN) 

and an exhaustive search technique.  

The results derived from the application of our parameter extraction algorithm 

to the extraction of semiconductor parameters using CL/EBIC signals can be 

summarized into the following points: 

 For the simultaneous extraction of the four related parameters (L, α, Zt, 

Q) from CL signal a unique set of parameter values is obtained with 

errors less than: 3.5% for L, 4% for α, 3% for Q, and 4% for Zt, in 95% 

of the cases used, and an error less than 5.5% for L, 5% for α, 4.5% for 

Q, and 4.5% for Zt, in 100% of the cases. This clearly indicates that the 

proposed strategy is very successful.  
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 The training, test and oversampling errors are significantly larger for 

low energy beam values. This is remarkable at 10KeV. This is due the 

fact that the variation of CL signal for low beam energies is very small 

when these parameters are varied (see figure 2.3.a and 2.3.b in 

chapter2). The sensitivity of the CL signal to the variation of 

parameters at low beam energies is small. This makes the modeling of 

the CL generation process using the ANN difficult for low beam 

energies and relatively the error is high for low beam energies.   

 The performance of algorithm in terms of the percentage error of each 

parameter, improves as the SNR increases.   

 For the simultaneous extraction of the two parameters (L, S) from 

EBIC a set of parameter values is obtained with errors less than 1.7% 

for the diffusion length and less than 4% for the normalized surface 

recombination velocity in 95% of the cases and an error less than 2.7% 

for the diffusion length and less than 8% for the normalized surface 

recombination velocity in 100% of the cases. These results confirm 

that our strategy is very successful. 

  

Chapter references 

1. L. Cazzanty, M. Khan, F. Cerrina, “Parameter extraction with neural 

networks”, Proceeding SPIE, 3332, 654. 1998 

2. Puhlmann, N. Oelgart, G. "Semiconductor Characterization by means of 

EBIC, Cathodoluminescence, and photoluminescence". Physica Status Solidi. 

(a) 122,705. 199031. 



Chapter 5 semiconductor parameter extraction using Artificial Neural Networks and exhaustive search 

 108 

3. Oka. Kurniawan, "device parameters characterization with the use of EBIC", a 

thesis submitted for the degree of Doctor of Philosophy, Nanyang 

Technological University, 2008, supervised by Professor V. K. S. Ong. 

4. Kurniawan. O, Ong. K. S, "Choice of generation volume models for electron 

beam induced current computation", IEEE Transactions on Electron Devices 

56(5), 1094-1099, 2009. 

 



Chapter 6   semiconductor parameter extraction using Artificial Neural Networks, an inverse modeling 

 109 

Chapter 6 
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6.1 Introduction 

In this chapter a new parameter extraction algorithm based on ANN is 

presented and discussed, the ANNs are used here to model the inverse process of 

CL/EBIC generation process (see chapter3 paragraph 3-7).  

The parameter extraction algorithm is applied to the simultaneous extraction of 

the diffusion length L, absorption coefficient α, dead layer thickness Zt, and relative 

quantum efficiency Q, from any steady state CL signal of a free defect semi-infinite 

semiconductor. Similarly, the parameter extraction algorithm is also applied to the 

simultaneous extraction of two related semiconductor parameters, that is, the diffusion 

length L and the normalized surface recombination velocity S from any EBIC line 

scan in a normal collector configuration.  
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6.2 Parameter Extraction based on ANN and inverse modeling  

Assume we have a nonlinear functional relationship given by: 

1 2( , ... )
n

F X X XY  ; where Xi i=1,…n represents the  input vector and Y is the 

output vector (signal). The parameter extraction algorithm based on a feedforward 

ANN, and inverse modeling technique is summarized into the following steps: 

6.2.1 Preparation of the training and test data sets: 

To train the ANN, the training data set is prepared by sampling and stacking the 

parameters (X1,X2…Xn) into vectors as follows:
11 1,1 1,2 1,[ , ,... ]train train train train

d
X X XX , 

22 2,1 2,2 2,[ , ,... ]train train train train

d
X X XX … ,1 ,2 ,[ , ,... ]

m

train train train train

n n n n d
X X XX , where there dimensions are 

given by {1-by-d1}, {1-by-d2}…{1-by-dm} respectively. All the possible combinations 

of the vectors 
1 2, ...train train train

n
X X X  form the input training set Xtrain  of dimension {n-by- 

d1× d2×…dm}. For each column of Xtrain  the Y signal is evaluated using. The results 

are stored in another matrix Ytrain  (output training set).  

For the test data set the two parameters (X1,X2…Xn) are sampled and stacked into 

vectors by taking the mid-value between each two successive values of the training 

set: 
11 1,1 1,2 1, 1[ , ,... ]test test test test

d
X X X X , 

22 2,1 2,2 2, 1[ , ,... ]test test test test

d
X X X X … 

,1 ,2 , 1[ , ,... ]
m

test test test test

n n n n d
X X X X . The dimensions of the vectors 1

testX , 2

testX … test

n
X are 

given by {1-by-(d1-1)}, {1-by-(d2-1)}… {1-by-(dm-1)}, respectively.  All their possible 

combinations form the input test data set Xtest of dimension {n-by-(d1-1)× (d2-1)… 

× (dm-1)}. For each column of the matrix Xtest , the Y signal is calculated and the 

results are stored in a matrix Ytest (output test data set). 
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6.2.2 Training the ANN algorithm: 

The ANN is trained to model the inverse of the functional relationship f between 

the input process data set Xtrain  and the output data set Ytrain
 (see §3-7 in chapter 3), 

that is, the output process data set Ytrain is used as an input to the ANN and the input 

process data set Xtrain is used as an output of the ANN, that is: 

1

 ftrain train
Y X  (6-1) 

Here the ANN receives the input data set Ytrain and calculates the actual output data set 

actualX which is then subtracted from the desired output data set Xtrain resulting in an 

error e. The latter is then used to update the ANN weights. This process is repeated a 

number of epochs till the sum squared error (SSE) goes beyond a predefined 

threshold. The SSE is given by the following formula [1] : 

2

1

( )

train
k

train actual

j j

j

SSE Y Y


   (6-2) 

where k
train

 represents the number of samples of  Ytrain . 

6.2.3 Testing the ANN algorithm 

Once the ANN has been trained, its ability to generalize is tested by applying a 

new set of input values testY that have not seen before. The output vector 

testX calculated by the ANN is then compared to the desired data set testX and the 

sample-by-sample percentage error between testX and 
testX is calculated using the 

following formula [1]: 

, ,

,

,

100

test test

i j i j

i j test

i j

e
 Y Y

Y
 (6-3) 

 



Chapter 6   semiconductor parameter extraction using Artificial Neural Networks, an inverse modeling 

 112 

where i and j indicate the i
th

 row, j
th

 column of the matrices Ytest and Ytest
, 

respectively. 

6.3 Application to cathodoluminescence 

We present here the application of the parameter extraction algorithm 

described above to the simultaneous extraction of diffusion length L, normalized 

surface recombination velocity S, absorption coefficient α, dead layer thickness Zt, 

and relative quantum efficiency Q from a steady state CL signal of a free defect semi-

infinite semiconductor (Hergert's et al model; see chapter2). 

We consider an n-type GaAs semiconductor its critical angle is equal to: 16° 

and its atomic number is equal to: 32, and the electron beam is perpendicular to the 

surface of the semiconductor sample. 

6.3.1 Training the Algorithm 

 First, the input/output data pairs used to train the ANN are collected. The data 

was collected from the evaluation of Hergert's model. However, Monte Carlo 

simulations and experimental data can be used as well to form the input/output data 

pairs for the training of ANN. The CL signal was calculated for each combination of 

the parameters , ,  train train train trainα L S Zt and trainQ for different values of the energy beam. 

Table6.1 details the values of the semiconductor parameters used to generate the CL 

signal and consequently form the input/output data pairs used for training the ANN. 

For , ,  train train train trainα L S Zt and trainQ , the values in [2] were used here as well.     
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Table6.1 Semiconductor parameters used for training (CL) 

 

Material Parameter 

 

Minimal  

value 

Maximal  

value 

Sampling 

step  size  

Number 

of 

samples 

Energy beam (KeV ) 10 50 10 5 

Diffusion length  L
train

(µm) 0.73 0.77 0.01 5 

Absorption coefficient  αtrain
 (µm

-1
) 0.78 0.82 0.01 5 

Normalized surface recombination 

velocity S
train

 

5 10 1 6 

Dead layer thickness  Zt
train

 (µm) 0.03 0.08 0.01 6 

Relative quantum efficiency Q
train

 7.15 7.45 0.05 7 

Total number of samples used for training 5×5×6×6×7=6300 

 

As illustrated in Table6.1, taking all the possible combinations of 

, ,  train train train trainα L S Zt and trainQ , results in a total number of 6300 input/output pairs used 

to train the ANN. 

A feedforward neural network consisting of one hidden layer is used, the 

hidden layer comprises 30 neurons and uses logarithmic sigmoid transfer functions 

whereas the output layer consists of 5 neurons (corresponds to the number of the rows 

in X
train

) and uses linear transfer functions. Table6.2 illustrates the ANN parameters 

used in this simulation. The learning algorithm is a Levenberg Marquardt (see chapter 

3). 
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Table6.2 ANN parameters used for training (CL) 

ANN parameters 

Number of epochs 3000 

Desired goal 10
-4 

Number of hidden layers 1 

Number of neurons in the 

hidden layer  

30 uses logarithmic sigmoid transfer 

functions 

Number of neurons in the 

output layer 

5 (number of 

rows of X
train

) 

uses linear transfer functions 

 

The training curve of the ANN is shown in figure6.1; the desired goal is achieved 

after 1984 epochs. 
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Figure6.1 Training curve of the ANN (CL) 

 

Figure6.2 shows the percentage error between the theoretical parameters L, α, 

S, Q, and Zt and parameters calculated by the ANN. 
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The maximal percentage error for each parameter L, α, S, Q, and Zt is: 

1.5011%, 1.2883%, 0.9727%, 1.0843%, and 1.8617% respectively.  
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Figure6.2 Percentage error between theoretical parameters and the parameters 

calculated by ANN for the training set (CL). 

 

It is also instructive to observe the histogram plot of the error, as in Figure6.3. 
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Figure6.3  Probability density function PDF (bars) and cumulative density function CDF 

(solid line) of the percentage error of L, α, S, Q,and Zt for the training set. 

 

We notice from figure6.3 that most of the errors are clustered around zero, 

indicating that the ANN is able to learn the input/output relationship effectively. 

Table6.3 details the value of the percentage error in 95% and 100% of the training 

samples for each parameter.  
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Table6.3  Percentage error of the five parameters L, α, S, Q,and Zt for 95% and 100% of 

the training samples (CL). 

Semiconductor parameter For 95% of the training 

samples, the percentage 

error is below 

For 100% of the training 

samples, the percentage 

error is below 

L (µm) 0.6% 1.6% 

α  (µm
-1

) 0.6% 1.4% 

S  0.4% 1% 

Q (arbitrary units) 0.6% 1.4% 

Zt (µm) 0.6% 2% 

 

 We note from table6.3 that the maximal error in 95% of the training cases is of 

0.6% and in all the training cases the maximal error is of 2%.   

6.3.2 Testing the algorithm 

A data not seen before used for testing the ANN is illustrated in Table6.4 (taking the 

mid-value between each two successive values of the training set). 

Table6.4 Semiconductor parameters used for testing the ANN (CL) 

Material Parameter 

 

Minimal  

value 

Maximal  

value 

Sampling 

step  size 

Number 

of 

samples 

Energy beam (KeV ) 10 50 10 5 

Diffusion length  L
test

(µm) 0.73+(0.01/2) 0.77 0.01 4 

Absorption coefficient  αtest
 (µm

-1
) 0.78+(0.01/2) 0.82 0.01 4 

Normalized surface recombination 

velocity S
train

 

5+(1/2) 10 1 5 

Dead layer thickness  Zt
test

 (µm) 0.03+(0.01/2) 0.08 0.01 5 

Relative quantum efficiency Q
test

 7.15+(0.05/2) 7.45 0.05 6 

Total number of samples for the test 4×4×5×5×6=2400 

 

The total number of samples used for test is 2400 input/output pairs.  
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Figure6.4 illustrates the percentage error between the samples of the test CL 

signal and the CL signal calculated by ANN. The maximal percentage error for each 

parameter L, α, S, Q, and Zt is: 0.815%, 0.7847%, 0.5390%, 0.8544%, and 0.7472%, 

respectively.  
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Figure6.4 Percentage error between the theoretical parameters and the parameters 

calculated by ANN for the test set (CL). 

 

The PDF and the CDF of the percentage error is shown in Figure6.5. 



Chapter 6   semiconductor parameter extraction using Artificial Neural Networks, an inverse modeling 

 119 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

x

c
u
m

u
la

ti
v
e
 (

s
o
li
d
 l
in

e
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

number of samples

d
is

tr
ib

u
ti
o
n
 (

b
a
rs

)

L



S

Q

Zt

 

Figure6.5  PDF and CDF of the percentage error of L, α, S, Q,and Zt for the test set. 

 

Using figure6.5, we detail in table6.5 the values of the error in 95% and 100% 

of the test samples for each parameter. 

 

Table 6.5  Percentage error of the five parameters L, α, S, Q, Zt for 95% and 100% of 

the test samples 

Semiconductor 

parameter 

For 95% of the test 

samples,  percentage 

error is below 

For 100% of the test 

samples, percentage 

error is below 

L (µm) 0.5% 0.9% 

α  (µm
-1

) 0.4% 0.8% 

S  0.3% 0.7% 

Q (arbitrary units) 0.4% 0.9% 

Zt (µm) 0.4% 0.8% 
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 The results obtained and presented in table6.5 give a maximal error of 0.5% in 

955 of the test cases and a maximal error of 0.9% of all the test cases.  

6.4 Application to EBIC 

We present now the application of the parameter extraction algorithm described 

above to the simultaneous extraction of the diffusion length L and the normalized 

surface recombination velocity S from an EBIC line scan in a normal collector 

configuration (Donolato's model see chapter2). 

The material sample is chosen to be Silicon (a density of 2.33 g/cm
3
); the electron 

beam is perpendicular to the surface of the semiconductor sample. The line scans the 

region outside the junction, and the energy beam is equals to 14KeV which gives for 

the energy range a value of 1.7μm. 

6.4.1 Training the Algorithm 

The first step is to collect the input/output data pairs used to train the ANN. 

The data were collected from the evaluation of Donolato's model described in chapter 

2. However, Monte Carlo simulations and experimental data can be used as well to 

form the input/output data pairs for the training of ANN.  

To train the ANN, the EBIC signal was calculated for each combination of the 

parameters , train trainL S . Table6.6 details the values of the parameters used to generate 

the EBIC signal and consequently form the input/output data pairs used for training the 

ANN. For , train trainL S , the values in [3,4] were used here as well. 
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Table6.6-Semiconductor parameters used for training (EBIC)  

 

Material Parameter 

 

Minimal  

value 

Maximal  

value 

Sampling 

step  size  

Number 

of 

samples 

Beam position(µm) 6 6.9 0.2 5 

Diffusion length  L
train

(µm) 3 3.9 0.03 31 

Normalized surface recombination velocity  S
train

 
-1

2 4 0.03 67 

Total number of samples used for training 31×67=2077 

 

As illustrated in Table6.6, taking all the possible combinations of 

, train trainL S results in a total number of samples of 2077 samples, therefore, 2077 

input/output pairs are used for training the ANN. 

A feed forward neural network consisting of one hidden layer is used, the 

hidden layer comprises 15 neurons and uses logarithmic sigmoid transfer functions 

whereas the output layer consists of 2 neurons (corresponds to the number of rows in 

X
train

) and uses linear transfer functions. Table6.7 illustrates the ANN parameters used. 

The training algorithm is the Levenberg Marquardt (see chapter 3). 

 

Table6.7- ANN parameters used for training (EBIC) 

ANN parameters 

Number of epochs 300 

Desired goal 10
-3 

Number of hidden layers 1 

Number of neurons in the 

hidden layer  
15 

uses logarithmic sigmoid transfer 

functions 

Number of neurons in the 

output layer 

2 (number of 

rows of X
train

) 
uses linear transfer functions 
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The training curve of the ANN is shown in figure6.6; the desired goal was 

achieved after 8 epochs. 
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Figure6.6- Training curve of the ANN (EBIC) 

 

 

Figure6.7 shows the percentage error between the theoretical training 

parameters and the parameters calculated by the ANN. The maximal percentage error 

for L and S is 2.1141% and 5.4334% respectively. This indicates that the training is 

very satisfactory. 
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Figure6.7- Percentage error between theoretical training parameters and the 

parameters calculated by ANN (EBIC). 

 

It is also instructive to observe the histogram plot of the error, is presented in 

Figure6.8. 
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Figure 6.8 –PDF (bars) and CDF (solid line) of the percentage error for the training set (EBIC). 
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In figure6.8 most of the errors are gathered around zero, this means that the 

ANN is able to learn the input/output relationship successfully.  

From figure 6.8 we can detail the values of the error in 95% and 100% of the 

training samples for each parameter, the results are reported in table 6.8. 

 

Table6.8- percentage error of two parameters for 95% and 100% of the samples (EBIC). 

Semiconductor parameter For 95% of the samples,  

error is below 

For 100% of the samples, 

error is below 

L (μm) 1.5% 2.5% 

S 3% 5.5% 

 

The maximal error obtained in 95% of the training set is of 3% and for all the 

training set the maximal error is of 5.5%. 

6.4.2 Testing the algorithm 

Our ANN is tested using values of EBIC not seen before as illustrated in Table6.9. 

 

Table6.9-Semiconductor parameters used for testing the ANN (EBIC) 

Material Parameter 

 

Minimal  

value 

Maximal  

value 

Sampling 

step  size 

Number 

of 

samples 

Beam position(µm) 

 

6 6.9 0.2 5 

Diffusion length  L
test

(µm) 3+(0.01/2) 3.9 0.03 30 

Relative quantum efficiency S
test

 

(arbitrary units) 

2+(0.05/2) 4 0.03 67 

Total number of samples for the test 30×67=2010 

 

The total number of samples used for test is 2010 samples. 
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Figure6.9 illustrates the percentage error between the samples of the test EBIC 

and the EBIC calculated by ANN. The maximal percentage error for L and S is 

2.3593% and 4.8562%, respectively. 
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Figure6.9- Percentage error between the theoretical parameters and the parameters 

calculated by ANN for the test set (EBIC). 

 

 

The histogram plot of the error and the CDF is shown in Figure6.10. 
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Figure6.10- PDF and CDF of the percentage error of L, S of the test set. 

 

From figure6.10, we detail in table6.10 the values of the error in 95% and 100% of 

the samples. 

 

Table6.10- Percentage error of the two parameters L and S for 95% and 100% of the 

samples  

Semiconductor 

parameters  

For 95% of the samples,  

error is below 

For 100% of the 

samples, error is below 

 L (µm) 1.75% 2.5% 

S 3% 5% 

 The maximal error obtained in 95% of the test cases is of 3% and is of 5% in 

100% of the test cases. 

6.5 Conclusion 

A new parameter extraction algorithm based on ANNs as inverse modeling is 

presented and discussed in this chapter for the joint extraction of the semiconductor 
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related parameters. The algorithm is applied to the semiconductor parameter 

extraction using CL/EBIC signals. The results obtained can be summarized into the 

following points: 

 For the simultaneous extraction of the five related parameters (L, α, Zt, 

S, Q) from CL signal a set of parameter values is obtained with errors 

less than: 0.5% for L, 0.4% for α, 0.3% for S, 0.4% for Q and 0.4% for 

Zt, in 95% of the cases, and an error less than 0.9% for L, 0.8% for α, 

0.7% for S, 0.9 for Q, and 0.8% for Zt, in 100% of the cases. The 

maximal error is 0.9% for all the cases, a result that clearly shows that 

the strategy proposed in this work is very successful in extracting the 

semiconductor parameters.  

 For the simultaneous extraction of the two parameters (L, S) from 

EBIC a set of parameter values is obtained with error less than 1.75% 

for the diffusion length and less than 3% for the normalized surface 

recombination velocity in 95% of the cases, and an error less than 

2.5% for the diffusion length and an error less than 5% for the 

normalized surface recombination velocity in 100% of the cases. The 

maximum error obtained for the extraction of the parameters in all 

cases is of 5%, this result shows that the strategy proposed in this 

work is very fruitful.  
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Chapter 7 

Semiconductor Parameter Extraction Using Genetic 

Algorithm 
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7.1 Introduction 

To the best of our knowledge, no work has been reported regarding the use of 

genetic algorithms (GA) in semiconductor parameter extraction from EBIC/CL 

signals. We present and discuss in this chapter a new parameter extraction algorithm 

based on genetic algorithms for the simultaneous extraction of related semiconductor 

parameters. 

The proposed parameter extraction algorithm is applied to the simultaneous 

extraction of five related semiconductor parameters, that is: the diffusion length L, the 

absorption coefficient α, the dead layer thickness Zt, the normalized surface 

recombination velocity S, and the relative quantum efficiency Q, from any steady 

state CL signal of a free defect semi-infinite semiconductor. 

Similarly, the proposed parameter extraction algorithm is also applied to the 

simultaneous extraction of two related semiconductor parameters, that is, the diffusion 
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length L and the normalized surface recombination velocity S from any EBIC line 

scan in a normal collector configuration.  

7.2 Parameter extraction using genetic algorithms  

Assume that the nonlinear functional relationship is given by: 

1 2( , ... )
n

F X X XY  ; where Xi i=1,…n represents the  input vector and Y is the 

output vector (signal). The parameter extraction algorithm based on genetic 

algorithms can be summarized into the following steps: 

7.2.1 Initialize the parameters  

The range over which the parameters (X1,X2…Xn) vary is set as: 

1 1 1[ , ]lower upper
X XX , 

2 2 2[ , ]lower upper
X XX … [ , ]lower upper

n n n
X XX , where lower and upper 

states for the lower and upper bounds of each parameter .   

7.2.2 Define the objective function  

The objective function  is defined as the difference in terms of the Euclidian 

distance between a certain measured signal measured
Y   for which the parameters 

( 1 2, ...
n

X X X
   ) are to be determined and the theoretical Y. This objective function 

can be written as follows: 

2

measured
Y Y    (7-1) 

7.2.3 Apply the genetic algorithm  

The genetic algorithm is applied through the following steps (see chapter 4): 

 An initial population is defined by an Npop× Nvar matrix, where Npop is 

the number of chromosomes and Nvar is the number of variables. 
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 The objective function defined previously is evaluated for all 

chromosomes in the population. 

 The GA operators (selection, crossover, and mutation) are performed. 

 The algorithm stops when one of the stopping criteria is met (i.e. an 

acceptable solution is reached or a certain number of iterations is 

exceeded). 

7.2.4 Extract the solution  

The solution exhibiting the best fitness value is considered as the final 

extracted set of parameters (
1 2, ...

n
X X X

   ). 

The different steps of the proposed parameter extraction algorithm can be 

summarized in the flowchart depicted in figure7.1. 

 



Chapter 7                                              semiconductor parameter extraction using Genetic Algorithms 

 132 

Define the objective function

Check if one of the stopping 

criteria is met
Yes 

Extract the desired 

parameters  

No 

Initialize the 

parameters 

(X1,X2…Xn)  

Generate initial 

population 

Evaluate fitness

Selection 

mutation

crossover

Generate a new 

population

 

Figure7.1. Flowchart of the proposed parameter extraction algorithm based on GA. 
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7.3 Application to cathodoluminescence 

We present in this section the application of the parameter extraction 

algorithm to the simultaneous extraction of five parameters: the absorption coefficient 

α, the diffusion length L, the normalized surface recombination velocity S, the dead 

layer thickness Zt, and the relative quantum efficiency Q, directly from any steady 

state CL signal of a free defect semi-infinite semiconductor (Hergert's et al model; see 

chapter2). 

The first step in the proposed algorithm is to initialize the semiconductor 

parameters (α, L, Zt, Q, S) where upper and lower bounds are selected from intervals 

provided in [1] and are detailed in Table 7.1.  

Table7.1. Lower and upper bounds of semiconductor parameters (CL) 

Parameter Lower bound Upper bound 

Energy beam (KeV ) 10 50 

Diffusion length  L(µm) 0.73 1.78 

Absorption coefficient  α (µm
-1

) 0.785 0.825 

Normalized surface recombination velocity S  3 6 

Dead layer thickness  Zt (µm) 0.03 0.18 

Relative quantum efficiency Q (arbitrary 5.15 5.45 

 

We consider an n-type GaAs semiconductor, with a critical angle of 16° and an 

atomic number of 32. The electron beam is perpendicular to the surface of the 

semiconductor sample. 

The GA parameters used in the simulation are detailed in table7.2.  
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Table7.2. GA parameters (CL) 

 

In order to have an idea about the objective function to minimize, a typical 

example is plotted below in figure7.2 for the two parameters only, that is, L and α: 
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Figure7.2 Cost surface of the objective function of the two parameters L and α. 

 Parameter Value 

Initial population 

options and other GA 

options 

Chromosome Length  5 (number of 

semiconductor 

Initial population size   1000 

Creation function Uniform 

Fitness scaling Rank 

Reproduction options Selection function Roulette wheel 

Elite count 2 

Crossover function Scattered 

Crossover fraction 0.8 

Mutation function Gaussian (mean=0, 

scale=1, shrink=1) 
Stopping criteria 

options 

Number of generations  100 

Stall generation  50 

Function tolerance 1e-6 
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It is clear that the objective function for L and α is very similar to the Rosenbrock 

(banana) function [2], which is one of the most difficult test functions in the 

optimization field. This provides us with an indication about the difficulty of the 

objective function when considering other parameters such as, S, Q and Zt. 

Figures7.3.a and 7.3.b show the best and mean fitness values and the average 

distance between individuals. 
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Figure7.3. Convergence of the GA: (a) best and mean fitness, (b) average distance 

between individuals. 

 

Figure7.3.a illustrates the best and mean fitness values for each generation. The 

mean fitness value and the best fitness value become equal when the GA converges.  

Figure7.3.b illustrates the average distance between individuals; it shows how the 

individuals explore the search space and converge to a single point that can be local or 

a global minimum.  

The parameter extraction algorithm is run 100 times (the reason behind is that the 

performance of the GA is random in the sense that it does not give the same results at 
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each run) and the Probability Density Function (PDF) / Cumulative Density Function 

(CDF) of the percentage error of each extracted parameter L, α, Q, S and Zt is 

evaluated.  

The initial population of the GA algorithm changes from one run to another (it is 

generated randomly using a uniform distribution with bounds specified in table7.1). 

This is because the genetic algorithm doesn't have any prior information about the 

objective function and therefore the best strategy in this case is to generate the 

population using a uniform distribution. However, if some apriori information about 

the objective function is available then other types of distributions can be used to 

generate the initial population. 

 In the following, the Probability Density Function (PDF) / Cumulative Density 

Function (CDF) of the percentage error of each extracted parameter L, α, Q, S and Zt is 

plotted in figure7.4. 

The percentage error of each extracted parameter is given by:  

min

min

% 100
No al Calculated

No al

Parameter Parameter
error

Parameter

   (7-2) 

where Parameter in (7-2) states for one of the parameters to be extracted. 

Parameter. 
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Figure7.4. PDF (bars) and CDF (solid line) of the percentage error for each of the five 

parameters L, α, S, Q,and Zt. 

Using Figure7.4, the percentage error in 95% and 100% of the runs for each 

parameter is detailed in Table7.3.  

 

Table7.3. Maximum percentage error of the five parameters L, α, S, Q, and Zt for 95% 

and 100% of the runs, respectively. 

Semiconductor 

parameter 

For 95% of 

the runs, error 

is below 

For 100% of 

the runs, error 

is below 

L (µm) 3.1 % 14 % 

α  (µm
-1

) 2.6 % 3.5 % 

Q (arbitrary units) 2 % 3 % 

S  12 % 30 % 

Zt (µm) 7.3 % 18 % 
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The maximal percentage error in 95% of the cases is of 12%. 

Effect of the initial population size 

Table7.4 illustrates the percentage error in 95% and 100% of the runs for each 

parameter for three different initial population sizes: 1000 (presented in table 7-6), 

100, and 10. 

It is clear that in general the larger the population size the less the percentage 

error. The size of the initial population obviously affects the performance of the 

extraction algorithm, and it is expected that the performance of the extraction 

algorithm improves (in a statistical sense) as the size of the population increases, that 

is, as the initial population increases the performance of the extraction algorithm 

improves as the number of runs tends to infinity. This is justified by the fact that a 

larger population size is able to search a larger space of the objective function and 

therefore has more chance to find a good solution. 
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Table7.4. Maximum percentage error of the five parameters L, α, S, Q, and Zt for 95% 

and 100% of the runs, respectively, with different initial population size. 

Initial size 

population 

Semiconductor 

parameters 

For 95% of the 

runs, error is below 

For 100% of the 

runs, error is below 

10 L (µm) 22 30 

α  (µm
-1

) 2.45 2.5 

Q (arbitrary units) 2.8 3 

S  31.5 35 

Zt (µm) 39 60 

    
100 L (µm) 20 25 

α  (µm
-1

) 2.4 2.5 

Q (arbitrary units) 2.75 3 

S  31 35 

Zt (µm) 14.5 18 

 
1000 L (µm) 3.1 % 14 % 

α  (µm
-1

) 2.6 % 3.5 % 

Q (arbitrary units) 2 % 3 % 

S  12 % 30 % 

Zt (µm) 7.3 % 18 % 

 

7.4 Application to EBIC 

We present now the application of the parameter extraction algorithm described 

above to the simultaneous extraction of the diffusion length L and the normalized 

surface recombination velocity S from an EBIC line scan in a normal collector 

configuration (Donolato's model; see chapter2). 

The first step in the proposed algorithm is to initialize the semiconductor 

parameters (L, S) where upper and lower bounds are selected from intervals provided 
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in [3,4] and are detailed in Table7.5. The sample material is chosen to be silicon (a 

density of 2.33 g/cm
3
). The electron beam is perpendicular to the surface of the 

semiconductor sample, the line scans the region outside the junction, and the energy 

beam is equals to 14KeV which gives for the energy range a value of 1.7μm.  

Table7.5. Lower and upper bounds of semiconductor parameters (EBIC) 

Parameter Lower bound Upper bound 

Beam position (µm) 

 

6.2 6.5 

Diffusion length  L(µm) 3 3.1 

Normalized surface recombination velocity 

S  

2 2.1 

 

The GA parameters used in the simulation are detailed in table7.6.  

 

Table7.6. GA parameters (EBIC) 

 

 Parameter Value 

Initial population 

options and other GA 

options 

Chromosome Length  2 (number of semiconductor 

parameters) 

Initial population size   20 

Creation function Uniform 

Fitness scaling Rank 

Reproduction options Selection function Roulette wheel 

Elite count 2 

Crossover function Scattered 

Crossover fraction 0.8 

Mutation function Gaussian (mean=0, scale=1, 

shrink=1) 

Stopping criteria 

options 

Number of generations  10 

Stall generation  50 

Function tolerance 1e-6 
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The parameter extraction algorithm is executed 10 times and the PDF and CDF of 

the percentage error of each extracted parameter L, and S is plotted in figure7.5. The 

percentage error of each extracted parameter is evaluated using (7.2).  
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Figure7.5. PDF and CDF of the percentage error for each of the two parameters L, and 

S. 

 

Using Figure7.5, the percentage error in 95% and 100% of the runs for each 

parameter are detailed in Table7.7.  

 

Table7.7. Maximum percentage error of the two parameters L and S for 95% and 100% 

of the runs, respectively. 

Semiconductor parameter For 95% of 

the runs, error 

is below 

For 100% of 

the runs, error 

is below 

Diffusion length L (µm) 0.48 % 0.5 % 

Normalized surface recombination velocityS  2.25 % 2.5 % 
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The results show that for 95% of the runs the maximum error for L is 0.48% and 

for S is 2.25%, and for 100% of the runs the maximum error for L is 0.5%, and for S is 

2.5%. 

7.5 Conclusion 

In this chapter we have presented a new parameter extraction algorithm based 

on genetic algorithms for jointly extracting semiconductor related parameters, the 

model is applied to the simultaneous extraction of five semiconductor parameters 

from CL/EBIC signals. We can summarize the results into the following points: 

 For the simultaneous extraction of the five related parameters (L, α, Zt, 

Q) from a CL signal, a set of parameter values is obtained with errors 

less than: 3.1% for L, 2.6% for α, 2% for Q, 12% for S and 7.3% for Zt, 

in 95% of the cases, and an error values less than: 14% for L, 3.5% for 

α, 3% for Q, 30% for S and 18% for Zt, in 100% of the cases. The 

results show that for 95% of the runs the largest error is that of S, this 

is reasonable as these parameters are jointly extracted. One way to 

reduce the percentage error is to reduce the dimension of the search 

space by removing some parameters (i.e. L, S) from the extraction 

process using CL and determining them using other techniques such as 

EBIC. This solution is actually considered for future work 

 The effect of the population size was discussed here as well; it is found 

that the percentage error becomes smaller for larger population sizes. 

This result is clearly noticeable in the 95% of the runs. This is expected 

to be true also for 100% of the runs if the number of runs tends to 

infinity. 
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 For the simultaneous extraction of the two parameters (L,S) from EBIC 

a unique set of parameters is obtained with error less then 0.48% for L, 

and 2.25% for S in 95% of the cases, and an error less than: 0.5% for L, 

and 2.5% for S in 100% of the cases. Since the parameters are jointly 

extracted the results obtained show that the proposed strategy is very 

successful. 
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Chapter 8           

Conclusion and future work 

 

Contents 
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8.1. Conclusion 

In this work, the semiconductor parameter extraction problem is formulated as 

an optimization problem. By doing so, powerful optimization tools such as neural 

networks and genetic algorithms can be used to find high-quality solutions with a 

reasonable cost.  

In this work, the Cathodolumiescenec and EBIC signals in the Scanning 

Electron Microscopy are used along with artificial neural networks (ANN) and 

genetic algorithms (GA) to extract the semiconductor parameters (absorption 

coefficient, diffusion length, dead layer thickness, relative quantum efficiency and the 

normalized surface recombination velocity) with a relatively small percentage error.  

The new techniques developed in this dissertation exhibit many advantages 

such as the simultaneous obtainment of near-optimum values for the extracted related 

semiconductor parameters and moderate computational complexity. 
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This work has stepped forward into the use of powerful optimization tools like 

artificial neural networks and genetic algorithms in the field of scanning electron 

microscopy which is a great tool in the characterization of the semiconductor 

materials and devices.  

Simulation results of the parameter extraction algorithms for CL/EBIC signals 

using ANNs and genetic algorithms indicated that these techniques are successful and 

of reasonable cost. Moreover, the parameter extraction algorithms based on neural 

networks do not require a theoretical model and can be used directly with 

experimental data. This is very useful because in practice theoretical models have 

limitations due to the approximations and assumptions used during the development 

of these models. Moreover theoretical models do not take into consideration 

measurement errors and hence parameter extraction techniques based on these models 

do not give accurate results with experimental data. Therefore, our approach 

represents a good alternative to these parameter extraction techniques. 

   

7.2. Future work 

This work left in the mind of the writer a number of questions, these could be 

answered by further improvements of both parameter extraction algorithms and 

optimization techniques.  

The investigation of electronic and optical properties in semiconductor 

characterization is of fundamental importance, thus a joint use of CL/EBIC signals 

along with the techniques presented in this work can offer possibilities for 

determining reliable quantitative information on electronic, optical properties and 

electrical activity of localized defects. 
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Our techniques can be extended to nano-contacts and nano-scale characterization, 

which are promising fields of research since most of the microscopes used in 

nanoscience and nanotechnology are electronic microscopes (SEM, STEM…). 
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Appendix A: Monte Carlo simulation of electron trajectories 

1. Theoretical background 

The physics underlying the interaction of non-relativistic electrons with specimen 

is detailed here. 

The Coulomb force is the fundamental force which describes the interaction 

between the incident electrons and the bombarded sample particles, and ionization is 

the principal energy loss mechanism and elastic collisions with the nuclei produce the 

majority of the relatively large angular deflection. 

The "slowing down approximation" is the assumption that the energy lost per unit 

path length dE/dS is a given function of the energy, the atomic number and the 

angular deflection.  

The energy lost per unit distance dS by the electron is given by the Bethe formula 

[1]: 

174
7.83 ln ( / )

dE Z E
KeV m

dS AE Z

              
 

(A-1) 

 

Where : Where, ρ(g/cm
3
) is the sample density, and A(g) is the atomic weight of the 

sample. 

A shielded Rutherford cross section is given by [1]: 

4

2 2 2

( 1) 1

(1 cos 2 )

d Z Z e

d p v


 

    
 

(A-2) 

 

Where β=0.25(1.12ħ/p)2 
, λ0= Z

1/3 
/0.885a0, p= mv (the electron momentum), and a0 is 

the Bohr radius. θ is the scattering angle.  
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The integration of (A-1) over all solid angles gives the total screened cross section 

[1]: 

2 4

2 2

0 0

( 1)

(1 )
T

d Z Z e
d

d p v

     
         

 

(A-3) 

 

If the electron beam is exponentially attenuated the mean free path λ is given by [1]: 

    1

0 / 0 /

0 0

exp (_ ) exp ( )
T A T A

s N s ds N s ds    
                

 

(A-4-a) 

 

 

21.02 (1 ) / ( 1)AT Z Z       

 

(A-4-b) 

 

Where N0 is Avogadro's number. 

 The path of an electron as it moves inside the matter is shown by figureA-1: 

Incident electron 

beam with energy E0

0

0
1 1, 

2 2, 

0

1

2

E0,S0

E1,S1

E2,S2

 

FigureA-1. Schematic geometry of the initial steps of electron scatterings. 

 



                                                                                                                                                  Appendix A 

 150 

The azimuthal angle is assumed to be a uniformly distributed random mangle between 

0 and 2π rad at each scattering event. 

 The two frames of reference to consider are: 

 The laboratory frame which is the fundamental frame is attached to the 

sample. 

 The scattering frame which co-moves with the electron. 

The geometrical connection between the two frames is shown in figure A-2. 

 

FigureA-2 laboratory and scattering frames. 

 

 At a given step the direction of the electron is defined by a unit vector Vn. the 

angles θn, n
 specify Vn relative to axes fixed in the laboratory frame. 

The scattering angles θ and   are defined in the scattering frame which uses Vn to 

define the Z' axis. 

The electron travels in the direction Vn until it undergoes a scattering defined by the 

scattering angle θ. The new direction of the electron in the laboratory frame is defined 

by the unit vector Vn+1. 

We want to find θn+1 and 1n
   in terms of θn, n

 , θ and  [1]. 

 Using figure A-2 we have : 
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1 sin cos sin sin cos
n

i j k         V  

 

(A-5-c) 

 

Where , ,i j k   refer to the scattering frame. 

 The scattering frame is connected to the laboratory frame as follows: 
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Then: 
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Or: 

  1
1

1

cos cos cos
cos

sin sin

n n

n n

n n

     


   

 

(A-8) 

 

To determine  1sin
n n
   the vectors Vn and Vn+1 are projected onto the x-y plan 

and the projections are named Pn and Pn+1 respectively (figure A-3).  

 

 

 

Figure A-3 projection onto the x-y plan. 

  

We have: 

 
 1 1 1

1

sin

sin sin

n n n n n n

n n

k

k

 
  

  


 
 

P P P P
 

 

(A-9) 

 

Direct evaluation of  1n nP P  in terms of the angles θn, n
 , θ and   gives : 

1 sin sin sin
n n n

k    P P
 

(A-10) 
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We finally have: 

 
 

1
1

1

1 1
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cos cos cos
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sin sin sin / sin

n n
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(A-11) 

 

 

 The angles θn+ 1, 1n
   are now determined in terms of θn, n

 and the scattering 

angles θ and  . 

2. Monte Carlo procedure 

We follow one electron through one scattering event. Initially the electron direction 

of motion is given by  ,
n n n
 V  and it has kinetic energy En. The angles ,  defines 

an elastic scattering event. The angles , , ,
n n

    serve to define 1 1,
n n
    and thus 

Vn+1. 

The normalized probability that the electron scatters through an angle θ is given by 

the use of (A-2) and (A-3): 

 
   

2

0 0

1

1 1 cos

1 2 cos

T

d
P d

d

   
 
 

    
   

 
 

 

(A-12) 

 

Thus: 

  1 2
cos

1

P

P

   
      

 

(A-13) 
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Now ,   can be determined by: 

1 2
cos

1

2

R

R

R






 
 

  


 

 

(A-14) 

 

Where ,R R   are random numbers between 0 and 1. 

If the number of electrons which persist after a distance S then: 

    /0 e S
N S N

  

 

(A-15) 

 

  is the mean free path. 

The probability that an electron interacts after traveling a distance S is then: 

      
 /

0

0

1
S

N N S
P S

N

e


  
 

 

 

(A-16) 

 

And so: 

 ln 1S P S      

 

(A-17) 

 

By choosing for  1 P S   random numbers RS the path length S traveled by an 

electron can be found as: 

ln
S

S R   

 

(A-18) 
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If Rn is the position of the electron in the laboratory frame before the nth scattering, 

and En is the kinetic energy of the electron for the nth scattering than the procedure 

can be summarized as follows: 

1. Given ,
n n

  . 

2. Generate three random numbers: , ,
S

R R R  . 

3. (A-14). 

4.    1 1cos , tan
n n n
     from (A-11). And Sn from (A-18) and (A-4). 

5.  1 1 1 1 1 1sin cos sin sin cos
n n n n n n n n

S i j k            R R . 

6. 
1n n n

dE
E E S

dS
   . 

7. 1 1,
n n n n
      . 

3. MATLAB codes 

%==================================================================== 

%= this code gives electron trajectories for any angle of incidence = 
%=               and any beam energy                                =  
%==================================================================== 
clear 
clc 
%close all 
format long 
 
%=== definition of constants =================== 
Z=32;                % atomic number of the target(Ge);  
A=72.59;             % atomic weight of the target (gm/mole); 
rho=5.3;             % density of the target (gm/cm3); 
thickness=2;         % target thickness(microm); 
E0=15;%[5 10 20 50]; % electron beam energy (KeV); 
length_E0=length(E0); 
number_e=200;        %number of electrons; 
 
%========================================================== 
%============ the program starts here ===================== 
%========================================================== 
%============ the iterations starts here ================== 
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for j=1:length_E0 
    for k=1:number_e 
        x(1)=0; % initial position of the electron (point of impact);  
        y(1)=0; 
        z(1)=0; 
        teta_n(1)=90; % initial scattering angle at the scattering 
frame (normal incidence)= 
        phi_n(1)=0;  %initial azimuthal angle at the scattering 
frame;  
        E(1)=E0(j);  %initial kinetic energy of the electron (KeV); 
        i=1; 
        while ((E(i)>0.5)&&(z(i)>=0)&&(z(i)<thickness)) 

 
            %====== generation of random numbers ========== 
            random_teta(i)=rand(1); 
            random_phi(i)=rand(1); 
            random_s(i)=rand(1); 
            %= calculation of beta the screening parameter= 
            beta(i)=3.4*10^(-3)*Z^(2/3)*E(i)^(-1);                                   
            %== calculation of the scattering and the azimuthal 
            % angles at the scattering frame. 
            teta(i)=acos(1-((2*beta(i)*random_teta(i))/(1+beta(i)-... 
                   random_teta(i)))); 
            phi(i)=2*pi*random_phi(i); 
            %== calculation of the mean free path in microm = 
            lamda(i)=1.02*beta(i)*(1+beta(i))*E(i)^2*A/(Z*(Z+1)*rho); 
            %=== calculation of the path traveled by the electron = 
            s(i)=-lamda(i)*log(random_s(i)); 
            %== calculation of the scattering and azimuthal angles  
            %   of the step i+1 at the laboratory frame;  
            teta_n(i+1)=acos(cos(teta_n(i))*cos(teta(i))-... 
                        (sin(teta_n(i))*sin(teta(i))*cos(phi(i)))); 
            phi_n(i+1)=phi_n(i)+asin((sin(teta(i))*sin(phi(i)))/... 
                      sin(teta_n(i+1))); 
            %== calculation of the new position at the step i+1 === 
            x(i+1)=x(i)+s(i)*(sin(teta_n(i+1))*cos(phi_n(i+1))); 
            y(i+1)=y(i)+s(i)*(sin(teta_n(i+1))*sin(phi_n(i+1))); 
            z(i+1)=z(i)+s(i)*cos(teta_n(i+1)); 
            %== calculation of electron's energy at the step i+1 = 
            delta_E(i)=s(i)*abs(-
7.83*rho*Z*log(174*E(i)/Z)/(A*E(i))); 
            E(i+1)=E(i)-delta_E(i); 
            i=i+1; 
        end 
        k=k 
        plot(x,z); 
        hold on; 
        xlabel('x'); 
        ylabel('z'); 
        clear random_teta random_phi random_s beta teta phi lamda ... 
              s teta_n phi_n x y z delta_E E 
    end 
    figure; 
    j=j 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%========================================================== 
%==== this code calculates the energy dissipation of the == 
%==  incident electrons for different energy beam values == 
%================================================ 
clear 
clc 
close all 
format long 
%======= definition of constants ============== 
Z=14;       % atomic number of the target(silicon); 
A=28.0855;  % atomic weight of the target (gm/mole); 
rho=2.33;   % density of the target (gm/cm3); 
thickness=3;% target thickness(microm); 
E0=[10 15 20];% electron beam energy (KeV); 
length_E0=length(E0); 
number_e=100; %number of electrons; 
  
%================================================ 
%======== the program starts here =============== 
%================================================ 
  
%=== the iterations starts here ================= 
z_s=0.01;%division step of thickness 
z_axis=[0:z_s:thickness];%division vector of thickness; 
buffered_z=buffer(z_axis,2,1,'nodelay');%buffered of the z_axis; 
size_buffered_z=size(buffered_z);%size of the bufferd vector; 
for l=1:length_E0 
%definition of the sum energy dissipation vector into each 
layer(KeV); 
    sum_delta_E=zeros(1,size_buffered_z(2)); 
%===========================================   
    for k=1:number_e 
        x(1)=0;% initial position of the electron; 
        y(1)=0; 
        z(1)=0; 
        E(1)=E0(l);%initial kinetic energy(KeV); 
%initial scattering angle at the scattering frame (normal incidence); 
        teta_n(1)=0; 
%initial azimuthal angle at the scattering frame; 
        phi_n(1)=0;                             
        i=1; 
        %     disp('while starts here'); 
        while ((E(i)>0.5)&&(z(i)>=0)&&(z(i)<thickness)) 
%= generation of random numbers ===== 
            random_teta(i)=rand(1); 
            random_phi(i)=rand(1); 
            random_s(i)=rand(1); 
%= calculation of beta the screening parameter =================; 
            beta(i)=3.4*10^(-3)*Z^(2/3)*E(i)^(-1); 
%= calculation of the scattering and the azimuthal angles at the  
%scattering frame; 
            teta(i)=acos(1-((2*beta(i)*random_teta(i))/... 
                    (1+beta(i)-random_teta(i)))); 
            phi(i)=2*pi*random_phi(i); 
%= calculation of the mean free path in microm = 
            lamda(i)=1.02*beta(i)*(1+beta(i))*E(i)^2*A/(Z*(Z+1)*rho); 
%= calculation of the path length traveled by the electron (micro m); 
            s(i)=-lamda(i)*log(random_s(i)); 
%= calculation of the scattering and azimuthal angles of the step i+1  
%at the laboratory frame; 
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            teta_n(i+1)=acos(cos(teta_n(i))*cos(teta(i))-... 
                 (sin(teta_n(i))*sin(teta(i))*cos(phi(i)))); 
            phi_n(i+1)=phi_n(i)+asin((sin(teta(i))*sin(phi(i)))/... 
                   sin(teta_n(i+1))); 
%= calculation of the new position of the electron at the step i+1 = 
            x(i+1)=x(i)+s(i)*(sin(teta_n(i+1))*cos(phi_n(i+1))); 
            y(i+1)=y(i)+s(i)*(sin(teta_n(i+1))*sin(phi_n(i+1))); 
            z(i+1)=z(i)+s(i)*cos(teta_n(i+1)); 
%= calculation of the energy of electron at the step i+1; =========== 
            delta_E(i)=s(i)*abs(-
7.83*rho*Z*log(174*E(i)/Z)/(A*E(i))); 
            E(i+1)=E(i)-delta_E(i); 
%= testing z(i+1)value at each iteration to calculate the energy  
%dissipation at each layer 
            for j=1:size_buffered_z(2) 
                if 
(z(i+1)<=buffered_z(2,j))&&(z(i+1)>buffered_z(1,j)) 
                    sum_delta_E(j)=sum_delta_E(j)+delta_E(i); 
                end 
            end 
            i=i+1; 
        end 
        k=k 
        clear random_teta random_phi random_s beta teta phi lamda... 
            s teta_n phi_n x y z delta_E E 
    end 
    sum_delta_E_norm=sum_delta_E/max(sum_delta_E); 
%= making the curve smooth===== 
    smooth_curve=smooth(sum_delta_E,500,'lowess'); 
    hold on 
    %figure 
    plot([1:size_buffered_z(2)],smooth_curve) 
    xlabel('depth_s') 
    ylabel('NDE_s') 
    %     hold on 
    %     figure 
    %     plot([1:size_buffered_z(2)],sum_delta_E) 
    %     xlabel('depth') 
    %     ylabel('NDE') 
    %     hold on 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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