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Abstract

Considered as one of the most promising (indirect) signals of new physics (NP) at colliders,

hints of lepton flavor universality violation (LFUV) in rare B decays, both in the charged- and

in the neutral-current processes, have been extensively investigated within a model-dependent

approach throughout the years. Whether mediated by the exchange of (real) heavy particles

(new massive bosonic mediators around the TeV scale) or hypothetical ones (leptoquarks), the

deviations from the SM predictions that have been reported in both ratios RK(∗) and RD(∗)

by LHCb, Belle and BaBar experiments, point towards a different behavior of the lepton

flavors when it comes to their couplings with the mediators of the transition. In fact, being

exclusively observed in semi-leptonic B-meson decays, NP is speculated to be mainly coupled

to the third generation of quarks and leptons. In this regards, we investigate these anomalies in

the framework of a model based on the extended gauge symmetry SU(3)C ⊗SU(3)L⊗U(1)X

with β = 1/
√

3 whose leptonic sector should consist of no less than five lepton triplets in

order to generate LFUV couplings. We work out how this set could accommodate the NP

scenarios favored by global analyses performed within a model-independent approach. We

show that, not only the adopted model accommodates significant NP contribution along

the direction Cµ9 = −Cµ10, currently favored by the global fits, but also, lepton flavor violating

transition might arise, provided that the NP contribution to the neutral transition b −→ sl+l−

is dominated by the exchange of both the model’s heavy (exotic) neutral gauge boson Z ′
µ and

the (light) SM’s Zµ. For the charged current (CC) anomaly, on the other hand, the model

proves able to accommodate the dominance of the vector/axial exchange, favored by the global

fits, provided that the transition b −→ clν is mediated by the SM’s gauge boson Wµ rather

than the model’s heavy one as its coupling with the fermions is suppressed at the desired

order of energy. More precisely, the leading order contribution would stem from the matrix

element that mixes an SM lepton with a massive neutrino without which, such contributing

term would not appear.

Keywords: New Physics (NP), Effective Field Theories (EFTs), Standard Model Extension,

Lepton Flavor Universality Violation (LFUV), Weak B- decays.
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Introduction

Being one of the most successful achievements in modern physics, the standard model

(SM) provides a very elegant theoretical framework that describes all known experi-

mental facts in particle physics (see, e.g. Refs. [1, 2]). Notwithstanding its ability to

predict all sorts of reactions among particles and particle properties once its free param-

eters are measured, the SM is considered as an incomplete theory; in a sense that there

has to be some dynamics beyond that should complement (or entirely replace) that of

the SM at some energy range. In fact, despite its enormous phenomenological success,

several ingredients hint towards the possibility of the existence of a new physics (NP)

that could be responsible for some of the experimentally observed events, to which the

SM could not provide an explanation. Effects of alternative scenarios that are built on

the SM are studied only to the extent that precise measurements are performed within

the SM and confronted with comparably precise experimental ones. They are referred

to, collectively, as beyond the SM (BSM) theories. The SM’s inability to account for

the lightness of neutrinos, for instance— which does not require a deep reappraisal of

the model, nevertheless— calls for a new high energy scale: the seesaw scale at around

109−1013 GeV, at which new degrees of freedom might exist [3–5]. Moreover, the lack of

an explanation of gravity in a yet-to-be discovered quatized form—as the theory breaks

beyond the Planck scale ΛPlanck = G−1/2 ≈ 1019 GeV—enforces a (natural) cut-off to

the scale of validity of the SM at which it ceases to be renormalizable [6]. Dark matter

(DM) constitutes also one of the issues that make the validity of the SM grind to a halt.

As a matter of fact, current cosmological models agree on the fact that the DM could
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Introduction

be made of a set of not-too heavy (nor too light) particles interacting very weakly with

the normal matter, and yet, none of which is one of the SM’s constituents [7]. Dark

energy (DE), on its part, is way more mysterious as it is not even clear whether or

not an appropriate standard particle interpretation could be adopted [8]. The problem

of Baryogenesis is also one of the shortcomings of the SM. In fact, the dominance of

matter over antimatter cannot be accounted for in the SM as this latter does not have

enough CP violation, nor baryon number violation B to create an unbalanced universe.

As a consequence, either new CP and B-violation dynamics are required, or new degrees

of freedom have to be introduced [9, 10].

Several other hints for NP that beg for a deep theoretical interpretation are to be found

in its free parameters. The three SM independent gauge group couplings, for instance,

which evolve with the energy, appear to meet at around 1014 − 1016 GeV [11,12]. This

could be interpreted by a larger gauge group—SU(5) as the simplest candidate—that

breaks down spontaneously to the SM’s so that its unique coupling constant branches

into the three couplings down from the grand unified theory (GUT) breaking scale.

Moreover, the U(1)B+L violation that appears in the SM through tiny non-perturbative

effects [13] and the seesaw mechanism—which is responsible for the generation of tiny

majoranna masses for the left-handed neutrinos in probably the most natural way pos-

sible [3,4]—also breaks the L by two units [14], even though gauge invariant couplings

that violate lepton L or baryon B numbers happen to be forbidden in the SM. So, there

is really no reason to expect for those accidental symmetries to be respected in nature.

Another issue with the SM’s free parameters is the so-called the hierarchy puzzle which

originates in the Higgs mass as quantum corrections tend to make it heavier than it

needs to be [15]. A tempting solution to this problem would be the assumption that NP

arises at a scale not too far from the TeV as the radiative corrections tend to mix the

two scalar sectors together (both SM’s and NP’s). Nevertheless, most of the mystery

concerning the SM’s free parameters lies in the fermionic sector as it constitutes their

main source. For instance, the question of why fermions are replicated in three (nearly

identical) copies is still one of the most mysterious features observed in nature espe-

2



Introduction

cially as the number of families is not dictated by any dynamical or symmetry principle

in the SM (and even beyond). Furthermore, the Yukawa couplings are arbitrary three-

by-three matrices, thus the regular patterns exhibited by fermion mass generation and

mixings is puzzling as there is no explanation to why it is what it is. With that being

said, it is natural to expect that some physics beyond the SM could be responsible for

generating all these flavor structures.

In view of all of the above, clearly the concept of new complementary dynamics that

should kick in at a scale not too far from the TeV is mandatory for the theory to be

remedied, which from a pragmatic perspective, would be welcomed as it would be di-

rectly accessible by the LHC. As neither the main characteristics of this NP nor its

fundamental nature are known, signs of its existence are looked for either directly or

inferintially from our current theoretical understanding. At the experimental plan, the

investigation of the TeV scale is carried out at the high energy frontier by considering

two complementary strategies performed at the LHC at CERN. The first, so-called

relativistic path, aims at producing and detecting new heavy degrees of freedom, and

thus, probing directly the scale of NP through specific signatures [16]. No signs of NP

have arisen yet, however, and only SM particles have been observed so far. The second

effort, quantum path, aims at investigating virtual effects from NP particles mediating

lower energy processes and thus affecting the low-energy observables. The second cate-

gory encompasses the investigation of one of the most interesting phenomena reported

by particle physics experiments hinting to lepton flavor universality violation (LFUV)

in semi-leptonic B decays. In fact, disagreement with the SM expectations have been

revealed in specifically four anomalies appearing in ratios assessing lepton flavor univer-

sality (LFU), namely Rτ/l

D(∗) , (l = µ, e) and Rµ/e

K(∗) in the flavor-changing charged current

(FCCC) decays B −→ D(∗)lν̄l and in the flavor-changing neutral current (FCNC) de-

cays B −→ K(∗)l+l−, respectively, for which attempts to provide a combined/coherent

explanation emerged, triggering a speculation of a possible NP interpretation [17–21].

The evidence collected so far translates into deviations from τ/e (and τ/µ) universality

in b −→ clν̄l and from µ/e universality in b −→ sll̄. In order to understand the pattern

3
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of these deviations in terms of NP contributions, many model-independent analyses

have been performed within an effective field theory (EFT) approach corresponding to

the SM at the b-quark mass scale supplemented with additional NP operators [22–26].

The global analyses were all able to interpret the deviations in terms of a shift in the

short-distance Wilson coefficients that couple to the non-SM operators describing left-

handed effective interactions. Even though these (model-independent) analyses are able

to provide an explanation for the pattern of the anomalies in terms of NP contribu-

tions that is felt at low energies, the need for a dynamical explanation of the deviations

requires the adoption of some BSM theories. Two sets of models have been proposed

to account for RK(∗) and RD(∗) simultaneously. The first constitutes models that are

assumed to reproduce LFUV processes mediated by leptoquark (LQ) particles (see, e.g.

Refs. [27–29]), while within models of the second set, LFUV processes are assumed to

be mediated with heavy exotic gauge bosons whose couplings with the fermions de-

pend on the generation (see, e.g. Refs. [17, 30–32]). These models feature heavy gauge

bosons (W ′, Z ′) (commonly referred to as Z ′ models) which are supposed to mediate

the transitions. The second set is based on the fact that one of the puzzling aspects of

the observed anomalies is that they appear exclusively in semi-leptonic B-decays. As

a matter of fact, no evidence of a deviation from the SM had been observed in semi-

leptonic K or π decays, nor the purely leptonic τ decays. As a consequence, the most

natural assumption to address this apparent paradox is to assume that NP is coupled

mainly to the third generation of fermions. A possible choice of models to go for are

the so-called 331 models which fall into the second set. They are based on the gauge

group SU(3)C⊗SU(3)L⊗U(1)X where the SM is embedded. Within these models, the

fermions are grouped into generations where one behaves differently than the others

when it comes to their couplings with the model’s gauge bososns (one generation has

different gauge charge assignements). This work is dedicated to the investigation of the

ability of a specific version of these models to accommodate the observed B- anomalies

for both the charged and the neutral flavor changing transitions in a coherent/combined

way.

4
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In doing so, a detailed description of the standard model is provided in Chapter 1,

where the main focus is given to its flavor structure as the flavor theory is the core of

this work. We follow with a theoretical description of the semi-leptonic rare B-decay

in Chapter 2 where the main theoretical tools used for the treatment within effective

field theories are presented. In Chapter 3, we present a specific BSM scenario that we

adopt which is based on the extended gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)X (called

for short 331 model). A detailed examination is provided for the model in question

where LFUV arising in the gauge couplings are pointed out. The results obtained are

finally compared with the global analyses performed within an EFT approach.

5



Chapter 1

The Standard Model

The Standard Model (SM) is a gauge theory based on the group GSM = SU(3)C ⊗

SU(2)L⊗U(1)Y . This model provides a unified theoretical framework that describes the

strong interactions of (colored) quarks and gluons, factored by SU(3)C , and the weak

and electromagnetic interactions that are factored by the famous Glashow-Weinberg-

Salam group SU(2)L ⊗ U(1)Y . These interactions occur via the exchange of the gauge

group’s corresponding spin-1 fields: eight massless gluons which mediate the strong

interaction, one massless photon for the electromagnetic interaction and three massive

bosons W±
µ , Zµ that mediate the weak interaction. The matter content of the SM

consists of fifteen fermion fields (and their anti-particles) that, based on the way they

transform under the model’s gauge group, are organized into five fields that have the

same quantum numbers, appearing each in three different replica of flavors (i = 1..3),

denoted by ψ(A,B)(Y/2)
1

QL
i ∼ (3, 2) 1

6
, uRi ∼ (3, 1) 2

3
, dRi ∼ (3, 1)− 1

3
,

LLi ∼ (1, 2)− 1
2
, lRi ∼ (1, 1)−1,

(1.1)

1A and B denote the representation under the SU(3)C and SU(2)L groups respectively, while Y
is the U(1)Y charge.

6



The Standard Model

where the left-handed fields are the SU(2)L doublets QL
i = (ui, di)L and LLi = (νi, li)L,

while their right-handed partners transform as SU(2)L singlets. Hypercharges Y of all

particles, which correspond to the symmetry U(1)Y , were determined experimentally

from the Gell-Mann-Nishijima relation

Q = I3L + Y

2
, (1.2)

where Q is the electric charge which is the same for the left- and right-handed com-

ponents of the Dirac spinor and I3L is the quantum number associated with the third

component of weak isospin. The other (fundamental) constituent of the SM is the

spinless Higgs boson Φ ∼ (1, 2)+ 1
2
. It corresponds to the complex SU(2)L doublet

Φ =

ϕ+

ϕ0

 . (1.3)

The Standard Model Lagrangian is usually divided into two main parts: the (highly

symmetric) gauge sector and the (symmetry breaking) Higgs sector. The gauge sector

is specified by the local symmetry GSM and by the fermion content (1.1)

Lgauge
SM =

∑
i=1..3

∑
ψ=QL

i ..l
R
i

ψ̄iiγ
µDµψi−

1
4
∑
α=1..8

Gα
µνG

µν
α −

1
4
∑
a=1..3

W a
µνW

µν
a −

1
4
BµνB

µν , (1.4)

where Gα
µν , W a

µν and Bµν are the strengths of the gauge fields of SU(3)C , SU(2)L and

U(1)Y respectively. They are given by

Gα
µν = ∂µG

α
ν − ∂νGα

µ − gsfαβγGβ
µG

γ
µ,

W a
µν = ∂µW

a
ν − ∂νW a

µ − gϵabcW b
µW

c
µ,

Bµν = ∂µBν − ∂νBµ,

(1.5)

7



The Standard Model

and the covariant derivative is given by

Dµ =
(
∂µ + i

g

2
τaW a

µ + i
g′

2
BµY

)
, (1.6)

where gs, g and g′ are coupling constants associated with the three groups of GSM which

determine the strengths of the interactions, and n, m run over red, green and blue QCD

color states2. τa/2 are the generators of the SU(2)L group where τa (a = 1..3) are the

three Pauli matrices, and Tα/2 are the generators of the SU(3)C group where Tα

(α = 1..8) represent the eight Gell-Mann matrices. fαβγ and ϵabc in (1.5) are SU(3)C
and SU(2)L structure constants, respectively. The former are antisymmetric in in index

permutation, while the latter are represented by the totally antisymmetric Levi-Civita

tensor.

The kinetic part of the Lagrangian for the left-handed quarks is obtained by the minimal

coupling where all possible symmetries of the SM are present

LQL = Q̄L
n,i

{
iγµ

[(
∂µ + i

g

2
τaW a

µ + i
g′

2
BµY

)
δnm + igs

Tαnm
2
Gα
µ

]}
QL
m,i, (1.7)

where i and j are flavor indices and both left-handed quark doublets have the same weak

hypercharge Y = 1/6. The guage kinetic terms of the Lagrangian for the right-handed

quarks, described by SU(2)L singlets, have the form

LqR = q̄Rn,i

{
iγµ

[(
∂µ + i

g′

2
BµY

)
δnm + igs

Tαnm
2
Gα
µ

]}
qRm,i, (1.8)

where q can be either an up- or a down-type quark. In this case, weak hypercharge and

electric charge are the same (2/3 for the up-type quarks and −1/3 for the down-type

quarks).

Due to unknown reasons, only left-handed particles participate in the weak interaction.

Left-handed quarks, though, differ from left-handed-leptons in that they take part in
2Red, green and blue in the case of the fundamental representation. In the case of the complex

conjugate representation, n and m correspond to cyan (antired), magenta (antigreen) and yellow
(antiblue).

8



The Standard Model

all known interactions, whereas leptons do not feel the strong interaction, hence the

absence of the term responsible for the strong interaction from their Lagrangian

LlL = l̄Li iγ
µ

(
∂µ + i

g

2
τaW a

µ + i
g′

2
BµY

)
lLi ,

and

LlR = l̄Ri iγ
µ

(
∂µ + i

g′

2
BµY

)
lRi .

(1.9)

lR here stands for a charged lepton as there is no evidence yet for the existence of right-

handed neurinos. If they do exist, they would have zero couplings both to SU(2)L and

to U(1)Y .

Up to this point, all particles are massless. The situation changes, however, when the

(local) gauge symmetry of the model breaks down spontaneously as the Higgs field Φ

acquires a non-zero vacuum expectation value (vev). The Higgs sector contains two

terms: the Higgs self-coupling LHiggs
SM and the Yukawa Lagrangian LYukawa

SM . The latter

generates masses for the (electrically) charged fermions, while the former generates

masses for the weak gauge bosons. It is given by

LHiggs
SM = (DµΦ)†(DµΦ) + V (Φ), (1.10)

where the potential term which describes the scalar self-interaction is given by

V (Φ) = µ2(Φ†Φ)− λ(Φ†Φ)2. (1.11)

The parameters are required to be λ > 0 and µ2 < 0. When the Higgs field acquires a

non-vanishing vev

Φ = 1√
2

0

v

 , (1.12)

9



The Standard Model

with ⟨Φ⟩ = v = (
√

2GF )− 1
2 ≈ 246 GeV, a spontaneous symmetry breaking (SSB) of the

electroweak (EW) group down to the electromagnetic (EM) is triggered

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
SSB−→ SU(3)C ⊗ U(1)em. (1.13)

This (Higgs) mechanism generates the masses of all gauge particles of the model except

for the eight quantum chromodynamis (QCD) gluons and the one qunatum electrody-

namics (QED) photon. The scalar kinetic term of (1.10) generates masses for the gauge

bosons

M2
gauge bosons ∼

1
2

(
0 v

)(1
2
gτWµ + 1

2
g′Bµ

)2
0

v

 , (1.14)

where three massive vector bosons W±
µ and Zµ appear

W±
µ = 1√

2

(
W 1
µ ∓W 2

µ

)
, with mass MW = 1

2
gv,

Zµ =
−g′Bµ + gW 3

µ√
g2 + g′2 , with mass MZ = 1

2
v
√
g + g′2,

(1.15)

and a fourth vector boson (identified with the photon) remains masseless

Aµ =
gBµ + g′W 3

µ√
g2 + g′2 . (1.16)

The coupling constants are related by the weak mixing angle known as the Weinberg

angle θW

sin θW = g′
√
g′2 + g2 , cos θW = g√

g′2 + g2 , (1.17)

which was introduced as a parameter that mixes up the Bµ and the W 3
µ bosons into

physical states Aµ and Zµ

Aµ = Bµ cos θW −W 3
µ sin θW , Zµ = Bµ sin θW +W 3

µ cos θW . (1.18)

10



The Standard Model

From the covariant derivative in Eq. (1.6), the fermion kinetic energy terms can be

written in terms of the vector boson mass eigenstates (1.15) and (1.16). They take the

form

Lint.
SM = Q̄L

n,i(i∂)QL
n,i+q̄Rn,i(i∂)qRn,i+L̄Li (i∂)LLi +l̄Ri (i∂)lRi +g

(
W+
µ J

µ+
W +W−

µ J
µ−
W + ZµJ

µ
Z

)
+eAµJµem,

(1.19)

where e is the coefficient of the electromagnetic interaction

e = gg′
√
g2 + g′2 = g sin θW , (1.20)

and Jµ+
W , Jµ−

W , JZW and Jem are the charged, neutral and electromagnetic currents,

respectively

Jµ+
W = 1√

2

(
ν̄LγµlL + q̄Luγ

µqRd
)
, Jµ−

W = 1√
2

(
l̄LγµνL + q̄Ld γ

µqRu
)
,

JZµ = 1
cos θW

∑
f

f̄Lγµ
(
If3 −Qf sin2 θW

)
fL, Jem =

∑
f

Qf f̄γµf,
(1.21)

where Qf is the electric charge of the fermion f and If3 is its quantum number associated

with the third component of weak isospin.

Masses of the fermions are generated with the same (Higgs) mechanism. After the SSB,

all quarks and (electrically) charged leptons become massive and flavor dynamics arises

in. The masses are generated with the Yukawa term of the Higgs sector that describes

the interaction of Φ with the fermion fields

LYukawa
SM = Y ij

d Q̄
L
i ΦdRj + Y ij

u Q̄
L
i Φ̃uRj + Y ij

l L̄
L
i ΦlRj + h.c., (Φ̃ = iτ 2Φ†), (1.22)

where the Hermitian conjugate of the Higgs Field Φ̃ ∼ (1, 2)− 1
2

is useful in constructing

Yukawa interactions invariant under the electroweak group. τ 2 is one of the three Pauli

matrices that generate SU(2)L and Y ij
f are Yukawa couplings. The fermion mass terms

11
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for both quarks and charged leptons are then

Lmass
SM = ūLi M

ij
u u

R
j + d̄Li M

ij
d d

R
j + l̄Li M

ij
l l

R
j + h.c., (1.23)

whereM ij
f are 3×3 fermion (f = u, d, l) mass matrices which in general are non-diagonal

M ij
f = 1√

2
vY ij

f . (1.24)

The mass spectrum of the fermions exhibits a hierarchy in the Yukawa couplings that

increases from one generation to another. Since the fermion mass generation is inti-

mately connected to the scalar sector, this latter, considered the most obscure part of

the SM, is the main source of flavor dynamics. Thus, clearly the flavor sector of the

SM appears to be one mysterious territory that deserves a deep exploration.

1.1 The flavor sector of the SM

In addition to the local symmetry induced by the gauge structure in Eq. (1.4), a global

U(3)5 = U(3)3
q ⊗ U(3)2

l flavor symmetry of Lgauge
SM also rises from this same structure3.

Both symmetries get broken with the introduction of the same SU(2)L scalar doublet

Φ: the local symmetry gets spontaneously broken by the ground state vev of the Higgs

field, while the global flavor symmetry is explicitly broken by the Yukawa interaction

of Φ with the fermion fields (1.22), as the Yukawa couplings Yu,d,e are in general non-

diagonal matrices. In fact, in the absence of Yukawa interactions (i.e. the Yukawa

couplings are set to 0), LSM is just the sum of of covariantized kinetic energy and

self-interacting boson terms, where a linear unitary transformation among the fields

can be safely made without altering the Lagrangian. Thus, for each of the five SM

representations (each is replicated in three copies) (1.1), the redefinition freedom is by

3× 3 matrices which are elements of the group U(3). The flavor symmetry group can

3U(3)5 flavor symmetry corresponds to the independent unitary rotations of the fermion fields in
flavor space, where for each SM representation, the redefinition is by elements of U(3).

12
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SM field QL uR dR LL lR

B +1/3 +1/3 +1/3

L +1 +1

Y +1/6 +2/3 −1/3 −1/2 −1

U(1)pq +1 +1

U(1)′ +1

Table 1.1: U(1)5 symmetry quantum numbers assigned to each SM’s fermionic field.

be decomposed as4

Gflavor = U(1)5 ⊗Gq ⊗Gl, (1.25)

where

Gq = SU(3)QL
⊗ SU(3)uR

⊗ SU(3)dR
, Gl = SU(3)LL

⊗ SU(3)lR , (1.26)

and the residual flavor symmetry group of the Lgauge
SM , which is not broken by the Yukawa

interactions

U(1)5 = U(1)B ⊗ U(1)L ⊗ U(1)Y ⊗ U(1)pq ⊗ U(1)′, (1.27)

where three of the five U(1) subgroups can be identified with the total baryon B and

lepton L family number conservation, and the weak hypercharge5 [33]. The two re-

maining U(1) groups can be identified with Upq (Peccei-Quinn symmetry) where the

Higgs has an opposite charge to dR and lR fields, and U(1)′ which corresponds to a

rotation of lR only. Table (1.1) illustrates the quantum numbers of U(1)5 assigned to

each fermionic field. The subgroups that control flavor-changing dynamics and flavor

non-universality are the thus the non-Abelian groups Gq and Gl, which are explicitly

broken by the Yukawa couplings Yu,d,e. The term "flavor violation" can thus safely be

4Whenever we have a U(N) symmetry, we can alwayas extract a global phase, which is independent
of the mixing, and a special unitary transformation U(N) = U(1)⊗ SU(N).

5The weak hypercharge Y is gauged and broken only spontaneously by the non-vanishing vev of
the Higgs field ⟨ϕ⟩ ̸= 0.
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used to describe processes or parameters that break the SU(3)3
q ⊗ SU(3)2

l symmetry.

To render the mass terms diagonal (i.e. diagonalize the Yukawa matrices) a further

linear redefinition of the fields is often adapted. The diagonalization is realized by the

introduction of two independent matrices for each Yukawa coupling

λu = V †
uYuWu, λd = V †

d YdWd, λl = U †
l YlWl, (1.28)

where λu,d,l are diagonal, and Vu,d, Ul and Wu,d,l are unitary matrices which relate the

interaction (primed) basis and the mass (unprimed) basis via

u′L = Vuu
L, d′L = Vdd

L, L′L = UlL
L, u′R = Wuu

R, d′R = Wdd
R, l′R = Wll

R.

(1.29)

The invariance of Lgauge
SM under Gl allows us to freely choose two matrices Ul and Wl that

diagonalize Yl without breaking gauge invariance, i.e., leading to no phenomenological

consequences. This is not the case for the quark sector where the diagonalization of

LYukawa
SM requires one out of two 3×3 matrices that rotate the up and down components

of the left-handed quark doublet, plus two unitary matrices that rotate uR and dR. In

fact

Q̄′LYdd
′R → Q̄′L(UQ)†

[
Vdλd(Wd)†

]
(Ud)d′R, Q̄′LYuu

′R → Q̄′L(UQ)†
[
Vuλu(Wu)†

]
(Uu)u′R,

(1.30)

where UQ, Ud and Uu are unitary 3 × 3 elements of Gq group that maintain Lgauge
SM

invariance. It is clear that Ud can be identified with Wd, and Uu with Wu, but only one

of the two Vd and Vu can be identified with UQ. By convention, we choose the basis

where Yd is diagonal, i.e. UQ ≡ Vd. Equation (1.30) becomes

Q̄′LYdd
′R → Q̄Lλdd

R, Q̄′LYuu
′R → Q̄L(Vd)†Vuλuu

R, (1.31)

where

Yd = λd, Yu = V †λu, (1.32)

14
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and

V = V †
uVd. (1.33)

The diagonal Yukawa matrices are then written as

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt), yq =
√

2mq

v
, (1.34)

where mq is the (physical) mass6 of the q quark. As a result, Lgauge
SM is no longer invariant

under Gq (SU(3)QL
). This shows, in particular, in the charged-current interaction

involving quarks that arises from the term Q̄L
i iDQ

L
i , which is the only term that feels

the change of basis. From Eqs. (1.19) and (1.21), we write

LCC
SM|quarks = g√

2
W+
µ (q̄′L

iuγ
µq′L
id ) + h.c.

qu,qd mass−basis−→ g√
2
W+
µ Vij(q̄LiuγµqLjd) + h.c.

(1.35)

Thus, the fact that the flavor symmetry does not allow the diagonalization of both Yd

and Yu from the left leaves us with a non-trivial unitary mixing matrix V which is

nothing but the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [34, 35] resulting

from the different orientations of Yd and Yu in SU(3)QL
group space. It is clear from

Eq. (1.35) that LCC
SM|quarks, which is diagonal in the flavor (interaction) basis, is no

longer diagonal when we switch to the mass basis. Tree-level flavor-changing charged

current (FCCC) transitions arise due to the presence of the VCKM matrix. This goes to

show its crucial importance in flavor physics, as it is the only source of flavor-changing

transitions in the SM.

1.1.1 Cabibbo-Kobayashi-Maskawa (CKM) matrix

The Cabibbo-Kobayashi-Maskawa matrix is a generic 3 × 3 complex unitary matrix

that originates from the Yukawa sector by the miss-alignment of Yu and Yd in the

SU(3)QL
subgroup of Gq (flavor space). It depends on three real rotational angles and

6λu ≈ diag
(
6× 10−6, 3× 10−3, 1

)
, which is more hierarchical than λd.
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six complex phases [36]. As a consequence of our choice of the quark basis where Yd and

Yu have the form in Eq. (1.32), five of the six complex phases can be eliminated (the

relative phases of the various quark fields), leaving us with four physical parameters:

three real angles and one complex CP-violating phase. Thus, the breaking of the quark

flavor symmetry in the SM is controlled by eleven parameters: the six quark masses in

λu,d (1.34) and the four parameters of V .

1.1.2 Some properties of the CKM matrix

The standard parametrization of the CKM matrix in terms of its four parameters is [37]

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

 ,
(1.36)

where cij = cos θij and sij = sin θij. θij are the three rotational angles (i, j = 1, 2, 3) and

δ is the complex phase. A strongly hierarchical pattern shows in the off-diagonal ele-

ments of the CKM matrix: |Vus| and |Vcd| values are close to 0.22, |Vcb| and |Vts| are of the

order 4×10−2, whereas the elements |Vub| and |Vtd| are of the order 5×10−3. In a more

explicit way, this hierarchy7 is conveniently exhibited in the Wolfenstein parametriza-

tion [38], where the matrix elements are expended in powers of the small parameter

λ
.= |Vus| ≈ 0.22. However, for the requirement of a sufficient accuracy, the simplest

and nowadays commonly adopted parametrization is obtained by a generalization of

the Wolfenstein parameters which are defined in terms of the exact parametrization in

7The order of magnitude of the VCKM elements is roughly given by V =

ϵ0 ϵ1 ϵ3

ϵ1 ϵ0 ϵ2

ϵ3 ϵ2 ϵ0

, with

ϵ ∼ 10−1.
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Eq. (1.36)

λ
.= s12, Aλ2 .= s23, Aλ3(ρ− iη) .= s13e

−iδ, (1.37)

whereA, ρ and η are free parameters of order 1. Expanding the Wolfenstein parametriza-

tion up to O(λ5) leads to

V =


1− 1

2
λ2 − 1

8
λ4 λ+O(λ7) Aλ3(ρ− iη)

−λ+ 1
2
A2λ5[1− 2(ρ+ iη)] 1− 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2 +O(λ8)

Aλ3(1− ρ̄− iη̄) −Aλ2 + 1
2
Aλ4[1− 2(ρ+ iη)] 1− 1

2
A2λ4

 ,
(1.38)

where the rescaled variables ρ̄ and η̄ are used

ρ̄ = ρ(1− 1
2
λ2) +O(λ4), η̄ = η(1− 1

2
λ2) +O(λ4). (1.39)

Due to its unitarity feature, the CKM matrix elements obey the relations

I)
∑

k=1,2,3
V ∗
ikVki = 1, II)

∑
k=1,2,3

V ∗
ikVkj ̸=i. (1.40)

These relations are a distinctive feature of the SM, thus their experimental verification

is a powerful consistency check of the model. In fact, relations of type (I) suppress the

possibility of a fourth family of quarks since the sum is verified experimentally to be

very close to 1 [16]. For i = 1 and j = 3, one of the six relations of type (II), implies

the relation

VudV
∗
ub

VcdV ∗
cb

+ VtdV
∗
tb

VcdV ∗
cb

+ 1 = 0 ←→ [ρ̄+ iη̄] + [(1− ρ̄)− iη̄] + 1 = 0, (1.41)

Which is the most commonly disscussed. It is usually represented in the (ρ̄, η̄) complex

plane as a unitarity triangle8 shown in Fig. (1.1)

The base is of unit length and the internal angles of the triangle are α, β and γ

8Sometimes referred to as "fat" 1-3 columns triangle as its sides are of comparable size, unlike the
other two triangles.
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Figure 1.1: The CKM unitarity triangle in the (ρ̄, η̄) complex plane.

whose senses are indicated as arrows in Fig. (1.1). They are defined as [39]

α ≡ arg
(
− VtdV

∗
tb

V ∗
udV

∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

V ∗
tdV

∗
tb

)
, γ ≡ arg

(
−VudV

∗
ub

V ∗
cdV

∗
cb

)
. (1.42)

Any phase transformation of the quark fields would not affect Eq. (1.41). As a matter

of fact, under such transformation, the triangle in Fig. (1.1) is rotated in the complex

plane, and yet it remains intact. i.e. its angles and sides (given by the moduli of the

elements of the mixing matrix) remain unchanged. The consistency of Eq. (1.41) can be

experimentally tested as both angles and sides of the triangle are observable quantities

which can be extracted from suitable experiments [40].

1.1.3 Present status of the CKM fits

The values of λ and A (values of |Vus| and |Vcb|, respectively) are determined with good

accuracy from the K −→ πlν and B −→ Xclν decays. Their numerical values are

determined with good accuracy [41]

λ = 0.22500± 0.00100, A = 0.826± 0.012. (1.43)

Thus, all the observables sensitive to the CKM matrix elements can be expressed as

constraints on the remaining parameters ρ̄ and η̄. Fig. (1.2) shows that the resulting
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Figure 1.2: Allowed region in the ρ̄, η̄ plane as obtained by the UTfit collaboration.

constraints are all consistent with a unique values of ρ̄ and η̄ [41]

ρ̄ = 0.148± 0.013, η̄ = 0.348± 0.010. (1.44)

The consistency of the constraints shown in Fig. (1.2) testifies for the consistency of the

SM in describing flavor physics. Therefore, qualitatively speaking, little room is left for

non-SM contributions in flavor changing transitions. In the SM, FCCC arise already at

tree-level, whereas, FCNC processes are highly suppressed. In fact, not only they arise

at one loop, but also these transitions always involve at least one off-diagonal element of

the CKM matrix and are further suppressed by the Glashow-Iliopoulos-Maiani (GIM)

mechanism [42]. This makes these transitions golden channels to look for NP effects.

Similarly to the quark sector, leptons would also mix. In fact, the unitary Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) mixing matrix would arise when we switch from the

flavor (interaction) basis to the the mass basis in the lepton sector. However, as the SM

predicts massless neutrinos, the UPMNS is not part of the SM. It would be significant,

however, in other BSM scenarios, as in the case we are adopting (see Section (3.69)).
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1.2 Lepton universality (LU)

Being based on the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y , the SM is structured in

a certain way that makes the three flavors of the fermion fields have the same gauge

charge assignements, which leads to the same structure of their couplings to the model’s

gauge bosons (gs, g, g′) [43]. This feature, known as universality, holds even when the

SM’s gauge symmetry gets broken down spontaneously as the Higgs field acquires a

non-vanishing vev. The Higgs mechanism, however, leads to the only difference there is

between the three families. In fact, the diagonalisation of the mass matrices, generated

by the Yukawa interactions between the Higgs and the fermion fields, yields mixing

terms between weak (interaction) and mass (physical) eigenstates, namely the CKM

and the PMNS matrices, that occur in the coupling of the weak gauge bosons to quarks

and leptons, respectively. Within the SM, as this latter does not account for the neutrino

mass, the PMNS matrix plays no role. As a consequence, in the case of the (tree-level)

FCCC transition b −→ cl−ν̄l for instance, a single (experimentally determined) CKM

matrix element Vcb is involved for all processes of the sort, regardless of what the flavor

of l might be. As for the (loop-level) FCNC transition b −→ sl+l−, the matrix elements

VibV
∗
is, which are involved in the LU testing observable, depend on the flavor of the

up-type quark running in the loop (i ≡ u, c, t). Due to the unitarity of the CKM

matrix and its hierarchical structure, all of its elements can be expressed in terms of

a leading term VtbV
∗
ts and a Cabibbo-suppressed contribution VubV

∗
us. With that being

said, even with the richness of the flavor structure that appears in the quark sector, the

leptonic sector is easier to analyze. In fact, in order to determine accurately the mixing

parameters of quarks, we need to establish a good understanding of hadronization effects

in flavor-changing (FC) transitions as quarks are confined within hadrons. Leptons

would also mix had neutrinos have non-vanishing masses. However, as the neutrino

mass eigenstates cannot be distinguished experimentally9, it is insignificant for the

phenomenology. Thus, a sum over the amplitudes associated to the production of all
9Neutrino mass mass differences are negligible compared to other scales and they are not detected

in experiments.
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three possible (anti)neutrino mass eigenstates is required. For the decay width of the

FCCC transition b −→ cl−ν̄l, for instance, because the (anti)neutrino mass eigenstate is

unspecified, the decay width features a factor of the form ∑
i=1,2,3 |Uli|2, where Uli is the

PMNS matrix element describing the overlap of each (anti)neutrino mass eigenstate i

with the produced lepton l. Due to its unitarity in the SM, the sum of the PMNS matrix

elements above should be equal to 1. Therefore, it is ignored in most computations.

Moreover, due to the absence of a direct lepton-gluon vertex, the leptonic sector provides

an easier subject to obtain precise theoretical predictions which can be compared with

the available data. In fact, semi-leptonic transitions, such as τ− −→ ντM
− or M− −→

l−ν̄l (M = π,K) provide accurate tests of the leptonic couplings even with the presence

of hadronization, which only involves gluonic exchanges between the quarks of a single

hadronic current. Yet, to a good approximation, QCD effects would cancel out had we

taken appropriate ratios of different semi-leptonic transitions with identical hadronic

components. This what makes either purely leptonic or semileptonic processes that

involve leptons of different generations but with the same quark transition, preferable

to test LU.

1.3 Lepton universality tests

Throughout the years, lepton universality has been tested using a variety of probes in-

cluding the production and the decay of the electroweak gauge bosons, purely leptonic

and semi-leptonic decays of mesons and the decay of quarkonia. While no significant

deviations from the SM expectation have been observed in several flavor-changing tran-

sitions, measurements from experiments of semi-leptonic B decays at the B-factories

(Belle, BaBar, Belle-II) as well as LHCb, hinted at a possible violation of LU, which

would be an unambiguous sign of the existence of physics beyond the SM. If NP orig-

inates at a scale Λ in the TeV range, then its effects on weak B decays would be sup-

pressed by inverse powers of Λ. Therefore, NP should be looked for in either processes

which are suppressed or forbidden (hidden) within the SM, or in observables that are
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predicted with high precision in the SM. The SM predictions for theses processes can

be computed by seperating short-and long distance contributions through an effective

Hamiltonian approach, when branching ratios of multiple decays are compared.

1.3.1 Lepton universality tests beyond the B sector

Several experiments testing LU, in other sectors of the SM, have exhibited an agreement

with the SM expectation meaning that no LU violations are present in the according

flavor changing processes.

Electroweak sector

A large number of experiments have proved that the three lepton families have the same

behavior when it comes to their coupling with the electroweak bosons (charged W and

neutral Z). For instance, experiments running at e+e− colliders10, at pp̄ (Tevatron)

and at pp (LHC) have obtained the most precise results. Measurements of Z −→ l+l−

(l ≡ e, µ, τ) partial widths are shown to agree well among each other [16]. In fact,

the leptonic partial-widths ratios ΓZ−→l+l−/ΓZ−→e+e− , where l ≡ µ, τ have testified

for LU in Z decays as they turned out to be equal [44, 45], agreeing thus with the

SM prediction. Ratios comparing the decays W− −→ e−ν̄e and W− −→ µ−ν̄µ which

depend on (ge/gµ)2 with gl being the coupling strength of W− −→ l−ν̄l are also shown

to be in good agreement with LU [46].

Purely leptonic decays

Pure leptonic decays of the τ lepton can also be used to test LU in FCCC. For the decay

modes11 τ− −→ e−ν̄eντ and τ− −→ µ−ν̄µντ , the most stringent experimental tests

obtained on the universality of the charged-current couplings to leptons (gl) implies

10LEP and SLC running at the Z pole or LEP2 where the direct production of W boson pairs is
enabled by the center-of-mass energy.

11Other kinematically allowed final states in the τ lepton decay are the semileptonic channels
τ− −→ ντ dū and τ− −→ ντ sū.
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that the first and the second lepton families are universal at the 0.14% level [16, 46].

Moreover, from the combination of the precise measurement of the branching fraction

τ− −→ e−ν̄eντ and of the τ and µ lifetimes [43], the ratios of the FCCC couplings gτ/gµ
and gτ/ge are found to be 1.0011± 0.0015 and 1.0030± 0.0015, respectively [46] which

both represent the most stringent experimental LU tests available today involving the

couplings of the first/second lepton family to the third one.

Semileptonic decays

Leptonic decays of pseudoscalar mesons M− −→ l−ν̄l, the semileptonic τ− −→ ντM
−

decay channels (M = π,K) and the leptonic decays of quarkonia also serve as powerful

tests of LU. Leptonic decays of charged pions or kaons provide the most stringent

constraints. In fact, the ratio of the partial decay widths ΓK−−→e−ν̄e/ΓK−−→µ−ν̄µ is

precisely computed within the SM to be (2.477 ± 0.001) × 10−5 [47]. This ratio is

now precisely known from several experiments that were dedicated to its measurement.

The world average has shown to agree with the SM expectation [16]. For charged

pions, the ratio Γπ−−→e−ν̄e/Γπ−−→µ−ν̄µ has also been measured [16]. These measurements

testing the coupling of the W bososn to the first two families of leptons (ge/gµ)2, have

shown to be consistent with—but one order of magnitude less precise than—the SM

prediction [47]. The ratio ΓJ/ψ−→e+e−/ΓJ/ψ−→µ+µ− also provides an accurate test of LU

with a precision of 0.31% [16]. Other quarkonia (e.g. ψ(2S) and Υ(2S)) leptonic decay

measurements yield constraints that are less precise by an order of magnitude. The

charmed-meson sector also enables a powerful probe of LU as the ratio of the partial

decay widths ΓD−
s −→τ−ν̄τ

/ΓD−
s −→µ−ν̄µ

has shown to agree also with the SM prediction

[48,49].

Semi-leptonic transitions, such as K −→ πl−ν̄l and D −→ Kl−ν̄l, can also serve as

tests of LU in FCCC. However, in order to be competitive with the leptonic decays,

these tests require the knowledge of the ratio of the scalar and vector form factors f0/f+

with a very high level of accuracy. This problem is not encountered in leptonic decays

as the main hadronic input (meson decay constants) cancels out of the LU ratios.
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LU tests in FCNC semi-leptonic decays such as K −→ πl+l−, D −→ π(ρ)l+l− or

D−
s −→ K−(K∗−)l+l− also lack accuracy as these decay modes are dominated by long-

distance hadronic contributions that are very difficult to estimate theoretically [50,51].

1.3.2 Current status of the B anomalies

Experiments investigating the B anomalies have been carried out at the LHC and the

two B-factories12: the one at SLAC National Laboratory in California and the other

one at KEK in Japan. The first comprised of the PEP-II collider [52] and the BaBar

detector [53], which completed taking data in 200813, while the second comprised of the

KEKB collider [54] and Belle experiment [55], which has ceased operating in 2012 and

is now upgraded to Belle II [56]. It has started collecting data in 2018. As for the LHC,

three major experiments are concerned with the study of B physics, namely ATLAS,

CMS and LHCb. This latter was designed to specifically study the production and the

decay of b and c hadrons.

A class of interesting B-physics observables which consitutes a powerful LFU test is

given by R-ratios which are ratios of branching fractions of semi-leptonic decays with

different lepton flavors in the final states, predicted with high precision in the SM. As

the hadronic uncertainties affecting the individual branching fractions (hadronic form-

factors) cancel out in the ratio, R-ratios are very clean observables [57]. In particular,

according to the underlying quark transition, the ratios of interest reported by LHCb,

can be grouped into two categories: ones that assess deviations from τ/l universality in

b→ clν̄l charged currents [58], and the ones that assess deviations from µ/e universality

12B-factories are asymmetric e+e− colliders built with purpose of producing a huge number of B
mesons. They operated at the Υ(4S) resonnace which decays immediately into a BB̄ pair.

13It was supposed to be followed by the SuperB experiment, to be built at the Cabbibo Laboratory
in Italy, but was canceled by the Italian government in 2012.
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in b→ sl+l− neutral currents. They are defined, respectively, as

R
τ/l

D(∗) =
B
(
B −→ D(∗)τ ν̄τ

)
B (B −→ D(∗)lν̄l)

, [l = e, µ], R
µ/e

K
(∗)
[q2

min
,q2

max]

=
B
(
B −→ K(∗)µ+µ−

)
q2∈[q2

min,q
2
max]

B (B −→ K(∗)e+e−)q2∈[q2
min,q

2
max]

,

(1.45)

where RK(∗) are measured over specific ranges for the squared dilepton invariant mass

q2 (in GeV 2/c4). In the SM, both R-ratios are expected to be unity due to the fact that

the weak interactions are lepton-flavor universal, i.e. gauge bosons couple in the same

way to all lepton flavors. The only sources of difference between the generations are

the masses of the charged leptons and their couplings to the Higgs boson, which have a

negligible effect on R-ratios. It has been observed that QED corrections could induce

up to 10% in RK(∗) , although, the analysis performed in Ref. [59] had shown explicitly

that these corrections do not exceed ∼ 0.03 in the region 1 GeV 2 < q2 < 6 GeV 2.

Therefore, any deviation from unity of RK(∗) in this region would constitute a clear

signal of NP.

The statistically most significant data that point towards LFUV in both charged and

neutral-current transitions are

R
µ/e

K(∗) |q2∈[q2
min,q

2
max]=


RK[1.1,6.0] = 0.846+0.060+0.016

−0.054−0.014 [60], 2.5σ

RK∗[0.045,1.1] = 0.66+0.11
−0.07 ± 0.03 [61], 2.7σ

RK∗[1.1,6.0] = 0.69+0.11
−0.07 ± 0.03 [61], 3.0σ

,

R
τ/l

D(∗) = 0.293± 0.038± 0.015, R
τ/l
D = 0.375± 0.064± 0.026,

(1.46)

where the values14 for the CC anomaly R
τ/l

D(∗) follow from the average [48] of LHCb,

Belle and BaBar data [58,62,63]. Furthermore, recent experimental results have shown

that the R-ratios are not the only tensions in semi-leptonic B dacays. In fact, LHCb

has reported a strong evidence for a deviation from the SM observed in the angular

distribution of the decay products in the decays B0 −→ K∗0µ+µ−. The most prominent

deviation concerns the angular distribution of B −→ K∗µ+µ−, which shows in the

14The first errors are statistical and the second ones are systematic.
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observable P ′5 that exhibits a 3σ deviation from what is expected in the SM [64, 65].

Additional tensions also arise in the branching ratios B(B −→ K∗µ+µ−) and B(B −→

ϕµ+µ−) [66, 67].

In terms of NP, B anomalies are investigated by means of two practical approaches

that allow the description of NP contribution to observables: one that relies on a

specific BSM theory while the other approach is based on an effective Hamiltonian that

separates long- an short-distance contributions.
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Chapter 2

Theoretical treatment of the B

anomalies

Despite its impressive phenomenological success in flavor and electroweak physics, many

convincing arguments motivate us to believe that the SM is not a complete theory, but

rather a low-energy limit of a more complete one to which the extension is still not

clear. The completion is believed to be achieved with the addition of some new (heavy)

particles that would exist at a higher energy scale. The new degrees of freedom that

are assumed to complete the theory are either incorporated within an explicit BSM

scenario, or described in a model-independent way. Within the former approach, the

SM’s gauge group is enlarged to a broader one and gets recovered when the extended

gauge symmetry breaks down spontaneously at a higher energy scale, leading to massive

gauge particles that, supposedly, mediate the interaction. Within the latter, on the

other hand, the new degrees of freedom get integrated out as they are heavier than the

SM particles, and their effects are encoded in dimensionless coefficients that couple to

local operators. As a consequence, physics beyond the SM, as well as within (SMEFT)

[68], is described by means of an effective field theory (EFT) approach where the SM

Lagrangian becomes the renormalizable part of a more general local Lagrangian made

up by a series of local operators of dimension d > 4. These operators are constructed
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in terms of SM fields and are suppressed by inverse powers of an effective scale Λ which

parametrizes the mass scale of the new heavy degrees of freedom that are integrated out

(Λ > mW ). To investigate the B anomalies, practical tools are needed to describe NP

contributions to semi-leptonic B decays. Rather than building an explicit extension

of the SM (model-dependent approach), the effective Hamiltonian approach (model-

independent approach) can be applied to both FCCC and FCNC decays.

2.1 Effective field theories (EFTs)

For processes whose typical energy E lies far below the energy scale of the interac-

tion responsible for the process—which is usually set by the mass M of the (heavy)

mediator—we naturally tend to separate the effects coming from different scales by

means of an EFT approach, where the massive degrees of freedom are integrated out,

and their effects are encoded in short-distance coefficients multiplying operators built

from light fields. The idea is similar to building the Fermi theory within the SM starting

from the electroweak theory. The Former—valid for β decays—is adapted for low-energy

transitions involving only light particles where the propagation of the massive (and/or

energetic) W gauge boson is neglected when integrated out. This leads to a point-like

four-fermion interaction and the effects of the massive degree of freedom are absorbed

into the short-distance coefficient GF
1, called the Fermi coupling constant, that weights

the contribution of the long-distance propagating operators built from light fields.

Problems involving different energy scales are usually dealt with by means of two main

theoretical tools: operator product expansion (OPE) and renormalization group equa-

tions (RGE). The OPE technique consists of building an effective Lagrangian by a

series of operators of dimension d > 4. For the purpose of computing the amplitude of

a (decay) process, the full theory below M can be replaced by

Leff =
∑
d>4

Nd∑
n=1

C(d)
n

Md−4 O
(d)
n (light fields), (2.1)

1GF /
√

2 = g2/8M2
W .
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where the O(d)
n are all the possible d-dimensional operators (Nd) compatible with the

symmetry of the theory built with fields lighter that M . C(d)
n is the (dimensionless)

Wilson coefficient that encodes the effects of the removed (heavy) mediator. Since the

operators of higher dimensions can usually be neglected in weak decays2, the series

can safely be truncated at d = 6. For the purpose of making up the effective La-

grangian Leff that reproduces the meson decay amplitude A—supposedly known and

computed within the full theory (Lfull) at a given order µ—, the Wilson coefficients Cn
are determined by matching both theories when requiring

Afull(I −→ F ) = Aeff(I −→ F ) = 1
M2

∑
n

Cn(µ) ⟨F |On(µ)|I⟩. (2.2)

For the one-loop case, Wilson coefficients are found by means of the equation

Cn(µ) = Cn(M) + k
α

4π
lnM
µ
, (2.3)

where Cn(M) is the Wilson coefficient we would find by doing a matching at the tree-

level (initial conditions), α is the strength of the interaction that originates one-loop

corrections and k is some constant. This procedure amounts to computing the Wilson

coefficients in ordinary perturbation theory. To evaluate the Wilson coefficients at

the energy scale of the process we are interested in, a simple substitution µ = E in

Eq. (2.3) would not be the right way to go since a large logarithm α ln M
E

might

arise due to the large gap between both energy scales. As a consequence, ordinary

perturbation theory would no longer make sense as it breaks down (α ln M
E

would no

longer serve as a good expansion parameter). This issue can be solved by switching

to RG-improved perturbation theory, which amounts to fixing the divergences observed

in the matrix elements ⟨On⟩ by means of operator renormalization [70]. We define the

2Operator of higher dimensions correspond to terms of the order O
(

k2

M2
W

)
where k, the momen-

tum transfer through the W propagator is small compared to MW [69].
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renormalization matrix ZO as3

O(0)
n (q) =

(
ZO
nm

)−1
Om(q), (2.4)

which relates the unrenormalized (O(0)
n ) and the normalized (Om) operators. The bare

effective Lagrangian (where fields and couplings are considered as bare quantities) can

be rewritten as
Leff ∝ CnO(0)

n (q(0))

≡ Z(1/2)x

q

(
ZO
nm

)−1
CnOm(q)

≡ CnOn +
(
Z(1/2)x

q

(
ZO
nm

)−1
− δnm

)
CnOm

≡ CnOn +
(
Z−1
nm − δnm

)
CnOm,

(2.5)

where x is the number of the external quark fields which are renormalized according to

q(0) = Z1/2
q q. (2.6)

Alternatively, Wilson coefficients are renormalized using

C(0)
n = ZC

nmCm, with ZC
nm = (Zmn)−1 . (2.7)

The bare Lagrangian is thus expressed in terms of renormalized fields and coefficients

with the addition of countertems. The renormalization matrix Znm is obtained by

requiring that the corresponding counterterm cancels the divergences inAeff (the matrix

elements
〈
O(0)
n

〉
). Namely by demanding

〈
O(0)
n

〉
= (Znm)−1 ⟨Om⟩ , (2.8)

3The renormalization constant Znm is a matrix so that operators that carry the same quantum
numbers can mix under renormalization.
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where Znm relates the unrenormalizd
〈
O(0)
n

〉
and the renormalized ⟨Om⟩ amputated

Green functions. We define the anomalous dimension matrix for the operators as

γ = Z−1 d

dµ
Z. (2.9)

Then, by demanding a non-dependence of the amplitude A of µ, we find that the Cn
obey the following series of renormalization group equations RGE whose structure is

fully determined by the anomalous dimensions of the effective operators.

µ
d

dµ
A = 0 ⇒ µ

d

dµ
Cn(µ) = γTnmCm(µ). (2.10)

It is solved, formally, in terms of an evolution matrix U as

Cn(µ) = U(µ,M)nmCm(M), (2.11)

with U(µ,M) is a matrix that describes the evolution of the Wilson coefficients from the

high-energy scale M down to the appropriate low energy scale µ [70]. In practice, the

problem reduces to solving the RGE (2.10) using the initial condition Cn(M) (2.3) which

is obtained by the matching procedure at high energy O(MW ) where the substitution

µ = M avoids large logarithms and thus allows the use of ordinary perturbation theory.

The solution will then be ran down to the appropriate energy scale µ with the help of

RGE. The first step is where NP may appear as the Wilson coefficients Cn(M) would

be modified had NP been heavy.

Within the SM, effective field theories are widely employed, despite the fact that full

theory is known. As a matter of fact, the approach has the advantage of making the

processes’ amplitudes easier to compute. The full potential of EFTs show when it

comes to accounting for higher order corrections, e.g. QCD corrections in non-leptonic

transitions (see Appendix (A)).
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2.1.1 Effective Lagrangian for b-quark decays.

Weak B decays can also be analyzed by means of an EFT approach both within and

beyond the SM, since their typical energy E ∼ mb lies far below the EW scale mEW
4

as well as the NP scale Λ. Within the SM, low-energy transitions involving only light

particles are described by dimension-six four-fermion operators where W and Z are not

considered as dynamical degrees of freedom; their presence is taken into account in the

Wilson coefficient GF in this case. The effective Lagrangian used to compute tree-level

amplitudes is the well-known Fermi Lagrangian

LSM
eff = −4GF√

2
(JµZJµ,Z + Jµ+

W Jµ−,W )

= −4GF√
2
∑
n

CnOn
(2.12)

where the neutral and charged currents are defined in Eq. (1.21) and Cn = 1 at the

electroweak scale. When applying this procedure to physics beyond the SM, we consider

this latter as the renormalizable part of an effective theory obtained by integrating out

heavy degrees of freedom arising at the high scale (Λ≫ mEW) at which NP is assumed

to originate. The full theory in the energy window mEW ≪ E≪ Λ can then be replaced

by an effective Lagrangian

Leff = LSM
eff + LNP

eff , (2.13)

where LNP
eff is the effective Lagrangian that describes NP. It should be invariant under

the SM gauge group and should contain only SM particles. It takes the form

LNP
eff = 1

Λ
∑
n

C(5)O(5)
n + 1

Λ2

∑
n

C(6)O(6)
n . (2.14)

4mEW identifies mt, mW,Z and v√
2

.
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The superscripts (5) and (6) denote five5 and six-dimensional operators6. Higher di-

mensional operators (d ≥ 7) can safely be neglected and the series can be truncated

at d = 6 [69]. Hereafter, the six-dimensional (four-fermion) operators will be denoted

by On. Wilson coefficients Cn are determined in perturbation theory by matching the

full theory onto the effective one at the EW scale to compute the initial conditions

Cn(mEW ) (2.3). After computing the operator anomalous dimension matrix, RGE are

used to describe the evolution of the Cn down to the low-energy scale.

When applying this procedure to physics beyond the SM, the nature of the degrees of

freedom integrated out is not known and so are the values of the effective couplings

of the higher-dimensional operators. Nevertheless, this approach allows us to analyze

all possible realistic extensions in terms a limited number of parameters (the Wilson

coefficients). For weak B decays, the energy of the process E ∼ mb is much smaller

than the energy scale of the interaction responsible for the process set by the mass M

of the corresponding mediator (EW as well as the NP scale ∼ TeV), thus, B decays can

be analyzed by means of an EFT approach.

An effective approach to FCNC b-quark decays

B-decay anomalies R
µ/e

K(∗) (1.45) are based on the neutral-current transition B −→

K(∗)l+l−, (l = µ, e). At the quark-level, b −→ s transitions are described within the

SM by the effective Lagrangian that contains the operators which contribute to the

semi-leptonic decay modes b −→ sl+l−, b −→ sνν̄ and the radiative process b −→ sγ

[57, 70,71]

LNC,SM
eff = −4GF√

2

(
λubs

2∑
n=1
CnOun + λcbs

2∑
n=1
CnOcn − λtbs

10∑
n=3
CnOn − λtbsCνOν + h.c.

)
,

(2.15)

where λpbs ≡ VpbV
∗
ps (p stands for the up-type quark) and On denote the different types

of operators: the current-current operators Ou,c1,2 and the QCD penguin four-quark op-
5Weinberg operator is the only five-dimensional operator. It is responsible for the generation of

neutrino masses. Since it does not play any role in our analysis, we safely neglect it.
6Out of the whole set of six-dimensional operators [72,73], we will focus on four-fermion operators.
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Figure 2.1: Diagrams relevant for the computation of C9 and C10 in the full theory
(a)-(c) and in the effective theory (d), (e).

erators O3−6 (where we sum over q = u, d, s, c, b), the electromagnetic O7 and chromo-

magnetic dipole operator O8 and the semi-leptonic operators O9, O10 and Oν [74]

Op1 = (s̄LγµTαpL) (p̄LγµTαpL) , Op2 = (s̄LγµpL) (p̄LγµbL) ,

O3 = (s̄LγµbL)∑q (q̄γµq) , O4 = (s̄LγµTαbL)∑q (q̄γµTαq) ,

O5 = (s̄LγµγνγρbL)∑q (q̄γµγνγρq) , O6 = (s̄LγµγνγρTαbL)∑q (q̄γµγνγρTαq) ,

O7 = e

16π2mb (s̄LσµνbR)Fµν , O8 = gs
16π2mb (s̄LσµνTαbR)Gα

µν ,

O9 = e2

16π2 (s̄LγµbL)
(
l̄iγµli

)
, O10 = e2

16π2 (s̄LγµbL)
(
l̄iγµγ5li

)
,

Oν = e2

16π2 (s̄LγµbL) (ν̄iγµ(1− γ5)νi) ,
(2.16)

where σµν = i
2 [γµ, γν ] and Tα are the SU(3) color matrices. The sum over repeated

flavor indices in semi-leptonic operators is understood. For the semi-leptonic process

B −→ Kl+l− the relevant operators involve either charged leptons or neutrinos. They

are O9, O10 and Oν . The effective Lagrangian that describes the Rµ/e
K anomalies reads

LNC,SM
eff = −4GF√

2
λtbs (C9O9 + C10O10 + CνOν) , (2.17)

where Oν is the operator that contributes to B −→ Kν̄ν. The Feynman diagrams

entering the computation of C9 and C10 at the matching scale mEW both in the full and

in the effective theory are displayed in figure 2.1.
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Essentially, the low-energy framework is effected by NP when this latter’s new heavy

degrees of freedom modify the Lagrangian (2.15). In fact, NP presence can violate

both the lepton flavor universality and the lepton flavor as it will contribute with a

non-universal and a non-diagonal structure in the lepton flavor indices. This contribu-

tion will lead to a modification in the operators that are already present in the SM by

substituting the implicit structure ii in the semi-leptonic terms with the more generic

one ij. Moreover, NP’s effect can manifest with the generation of non-negligible con-

tributions to the chirality-flipped versions of operators whose Wilson coefficients are

chirally-suppressed within the SM due to this latter’s charged current (V −A)(V −A)

structure. Namely, the dipole and the semi-leptonic operators O7−10
7 and Oν (denoted

hereafter by a primed sign) as well as scalar/pseudoscalar and tensor operators defined

as [75]

O′ij
S = e

16π2

(
s̄L(R)bR(L)

) (
l̄ilj
)

O′ij
P = e

16π2

(
s̄L(R)bR(L)

) (
l̄iγ5lj

)
OijT = e

16π2 (s̄σµνb)
(
l̄iσµνlj

)
OijT 5 = e

16π2 (s̄σµνb)
(
l̄iσµνγ5lj

) (2.18)

Although, due to the SU(2)L ⊗ U(1)Y invariance of the NP Lagrangian above mEW ,

constrictions on the Wilson coefficients of both types of operators will lead to the ex-

clusion of the tensor operators on one hand (CijT = CijT 5 = 0), and to a linear dependence

of the scalar/pseudoscalar operators on the other hand (CijS = −CijP and C ′ij
S = C ′ij

P ),

which leads to a reduction in the number of free coefficients [71].

For the NC transition B −→ Kl+l−, the Lagrangian used to address Rµ/e
K describes NP

effects in the coefficients C ′
9 and C ′

10. It reads

LNC,NP
eff = −4GF√

2
λtbs

(
Cij9 O

ij
9 + Cij10O

ij
10 + Cijν Oijν + C ′ij

9 O′ij
9 + C ′ij

10O′ij
10 + C ′ij

ν O′ij
ν

)
,

(2.19)

where O9 and O10 are defined in (2.16) (substituting lepton flavor indices (ii) with

7Wilson coefficients of the chirality-flipped counterparts of O7 and O8 are suppressed by ms/mb

in b→ s transitions.
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(ij)), whereas, their primed versions are defined as

O′ij
9 = e2

16π2 (s̄RγµbR)
(
l̄iγµlj

)
, O′ij

10 = e2

16π2 (s̄RγµbR)
(
l̄iγµγ5lj

)
,

O′ij
ν = e2

16π2 (s̄RγµbR) (ν̄iγµ(1− γ5)νj) .
(2.20)

Thus, being negligible in the SM, primed operators are supposed to dominate in LNC,NP
eff ,

whereas, unprimed operators, already present in the SM, are modified by NP. Both the

initial conditions and the anomalous dimension matrices are now known for the whole

set of the Wilson coefficients C1−10 at the next-to-next-to-leading order (NNLO) in QCD

and next-to-leading order (NLO) in electroweak corrections [76–79].

It should be stressed that the Lagrangian (2.19) can also be used to address the neutral-

current anomalies Rµ/e
K∗ . In fact, since the dipole operators which should be taken into

account in describing B −→ K∗l+l− affect Rµ/e
K∗ only in the low q2 region [80], they could

be omitted in the (central) region 1.1 GeV 2 < q2 < 6 GeV 2, where the same Lagrangian

(2.19) can be used for the description of both R
µ/e
K and R

µ/e
K∗ , but with primed Wilson

coefficients of opposite sign since K is a pseudoscalar and K∗ is a vector.

An effective approach to FCCC b-quark decays

The B-decay anomalies Rτ/l

D(∗) are based on the charged-current transition B −→ D(∗)lν̄.

In the SM, this decay takes place at tree level. In the presence of NP, the most gen-

eral elementary charged-current Lagrangian mediating the (quark-level) semi-leptonic

transitions b→ cl−i ν̄lj reads

LCC,NP
eff

(
b→ cl−i ν̄lj

)
= −4GF√

2
Vcb

(∑
n

CijnOijn + h.c.

)
, (2.21)
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where the sum runs over all dimension-six operatorsOijn (n8 ∈ {VL(R), SL(R), T}) allowed

by the SM gauge symmetry [81,82]

OijVL
= (c̄γµPLb)

(
l̄iγ

µUijPLνlj
)
, OijVR

= (c̄γµPRb)
(
l̄iγ

µUijPLνlj
)
,

OijSL
= (c̄PLb)

(
l̄iU

′
ijPLνlj

)
, OijSR

= (c̄PRb)
(
l̄iU

′
ijPLνlj

)
,

OijT = (c̄σµνPLb)
(
l̄iσµνU

′
ijPLνlj

)
,

(2.22)

where Vcb is the CKM matrix element, i, j are lepton flavor indices and U stands for the

PMNS matrix (U ′ is a mixing matrix that mixes right and left-handed massive states).

The effective couplings CijVL
≡ CijVL

(mb) are defined such that they vanish in the SM.

Within this latter, the dominant operator is OVL
= (c̄LγµbL)(l̄LγµνL) which describes

the tree-level exchange of the W boson, and contributes to CijV L with δij. Thus, the

deviation from the SM is quantified in the Wilson coefficients CijVL,R
, CijSL,R

and CijT . The

effective Lagrangian for the b→ cl−i ν̄lj reads

LCC,NP
eff

(
b→ cl−i ν̄lj

)
= −4GF√

2
Vcb

[
(δij + CijVL

)(c̄LγµbL)(l̄iLγµUijνjL) + CijVR
(c̄RγµbR)(l̄iLγµUijνjL)

+CijSL
(c̄RbL)(l̄iRU ′

ijνjL) + CijSR
(c̄LbR)(l̄iRU ′

ijνjL)

+CijT (c̄RσµνbL)(l̄iRσµνU ′
ijνjL) + h.c.

]
.

(2.23)

Once again, the SM Wilson coefficients have the same value for all lepton generations

as their couplings is universal.

Favored solutions from global fit analyses

For the NC transitions, the SM contribution to the Wilson coefficients in LNC
eff are known

to next-to leading order (NLO) accuracy [57,70], which are all the same for b −→ sl+l−

transitions. In fact, their values, for the only operators which are significant in the SM,

are C9 ≃ 4.3 and C10 ≃ −4.2 at the scale µ = mb for all lepton flavors. NP contributions,

on the other hand, are investigated with the help of global fits which involve observables

8n indicates the vector, scalar and tensor nature of the four-fermion operator, respectively.
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that are sensitive to NP’s presence. An analysis based on LFU observables Rµ/e
K and

R
µ/e
K∗ on one hand and on LFU differences of B −→ K∗l+l− angular observables Dp′

4,5

on the other, shows that the fit exhibits a preference for NP in individual Wilson

coefficients (1-dimensional scenario) that involve left-handed currents, namely Cl9 and

Cl10 (l = e, µ) [83]. Besides, an explanation of the measured values of both ratios in terms

of primed Wilson coefficients, which correspond to the right-handed quark currents, is

highly disfavored9. Moreover, experimental results concerning b −→ e+e− point towards

the absence of significant NP contributions to any electronic Wilson coefficient Cen [57].

Hence, the significant tensions between the SM predictions and measurements in b −→ s

NC processes are based on the transition b −→ sµ+µ−. The analyses that were destined

to investigate whether these discrepancies could be softened by NP contribution, even

if their choice of the observables included in the fit and the treatment of the theoretical

uncertainties were different, agreed all on the fact that the tensions can be relieved

by an NP effect in C9 that interferes destructively with the SM [64, 84–87]. In the

most recent global analysis of NP in b −→ sµ+µ− [87], it has been established that the

tension in RK (and RK∗) can be explained by a purely vector Wilson coefficient, namely

C9 ≃ −1.01 which is consistent with the previous global fits [64, 84–86]. Another good

scenario is provided by the left-handed combination C9 = −C10. Np in pairs of Wilson

coefficients (2-dimensional scenario) are also obtained in the pairs (C9, C10), (C9, C
′
9) and

(C9, C
′
10) which exhibit the strongest pulls. All the pairs behave similarly when it comes

to both individual Wilson coefficients: best fit points shift considerably in C9 whilst

the other operator undergoes a small shift. Table 2.1 illustrates the best fit points and

the strongest pulls for NP in one C9 and C10 or pairs (C9, C10), (C9, C
′
9) and (C9, C

′
10)

of Wilson coefficients [86]. For the CC transitions, the SM contribution to LCC
eff comes

from the dominant operator that describes the tree-level exchange of the W boson which

equals to 1 for all three lepton generations. NP contribution is quantified in the Wilson

coefficients CijVL,R
, CijSL,R

and CijT . According to several studies [82,88,89], the anomalies

9If O′
9 and O′

10 were dominant, we would have opposite anomalies since primed Wilson coefficients
enter RK and RK∗ with opposite signs
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Wilson coefficient best fit point 1σ pullSM

C9 −1.11 [−1.28,−0.94] 5.8σ

C9 = −C10 −0.62 [−0.75,−0.49] 5.3σ

C9 = −C ′
9 −1.01 [−1.18,−0.84] 5.4σ

(C9, C10) (−1.01,+0.29) 5.7σ

(C9, C ′
9) (−1.15,+0.41) 5.6σ

(C9, C ′
10) (−1.22,−0.22) 5.7σ

Table 2.1: Best fit points and pulls for scenarios with NP in one (1D) or two (2D)
Wilson coefficients. The 1σ best-fit ranges are shown for one-dimensional cases.

in RD∗ , which is exhibited in the tauonic decays b −→ cτν, can be accommodated by

the the vector exchange. In fact, the favorable solution is the product of the two left

handed currents with

CiiVL
∈ [0.09, 0.13], (2.24)

whereas, scenarios of NP in both the scalar CiiSL,R
and the tensor CiiT effective couplings

are highly disfavored [88,90].

2.1.2 The flavor puzzle and minimal flavor violation (MFV)

As already mentioned, all possible extensions of the SM could be described by a term

(2.1) in the effective Lagrangian (2.13), made up by a series of higher-dimensional

operators that are invariant under the SM gauge symmetry, regardless of what the

BSM scenario might be. Even though this approach has the advantage of analyzing

all realistic extensions of the SM in terms of a limited number of parameters (Wilson

coeffients), it makes it impossible to establish correlations of NP effects at low and high

energies. In fact, from the stabilization of the mechanism of electroweak symmetry

breaking, responsible for the SU(2)L ⊗ U(1)Y → U(1)em, we expect that the scale Λ,

at which NP is supposed to appear, to be slightly above the electroweak scale, i.e.,

it cannot exceed a few TeV. Moreover, the Wilson coefficients Cn are expected to be
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strongly coupled (of O(1)) to the effective operators that are allowed by symmetry

arguments, in order for the underlying theory to be natural (no fine-tuning in the

couplings). Several dimension-six operators, however, contribute to flavor changing

processes with coefficients that have to be severely suppressed if the NP scale is of a

few TeV (see Appendix (B)) creating thus a paradoxical situation which is referred to

as the flavor puzzle [91] and serves as the main motivation to introduce the minimal

flavor violation (MFV) hypothesis [92,93].

The basic idea of the MFV princple is to find a symmetry argument such that Cijn = O(1)

and at the same time keep the NP scale not too far from TeV. To do so, we exploit the

flavor symmetry of the SM, which is not an exact symmetry in the low-energy theory as

it is broken by the Yukawa interaction, and we "promote" it to be an exact symmetry

of the dynamics at the TeV scale, but also, we need to specify how it is broken in

order to describe the low-energy spectrum while staying in agreement with the precise

experimental tests of flavor-changing processes. In order to protect, in a consistent way,

quark-flavor mixing beyond the SM, we link the flavor-violating interactions beyond the

SM to the known structure of the Yukawa couplings. In a quantitative way, we assume

that Y u and Y d are the only sources of flavor symmetry breaking also beyond the SM,

i.e., we make the assumption that Gq introduced in Eq. (1.26) is an exact symmetry in

the NP model and it is broken by two non-dynamical fields (spurions) Y u,d which are

nothing but the promoted SM’s Yukawa couplings that have non-trivial transformation

properties under Gq (SU(3)QL
)

Y u ∼
(
3, 3̄, 1

)
, Y d ∼

(
3, 1, 3̄

)
. (2.25)

The role of the spurions in the breaking of the flavor symmetry would be similar to that

of the Higgs in the breaking of the gauge symmetry although the MFV construction

holds independently of the dynamical details of the construction. When the symmetry

gets broken at high energy scales, at low energy, we would only be sensitive to the

background (”vev”) values of the spurions, which are nothing but the ordinary Yukawa

40



Theoretical treatment of the B anomalies

couplings Yu,d. Thus, a theory satisfies the criterion of MFV if all higher-dimensional

operators that are built from SM fields and spurions are invariant under SU(3)QL
[93].

According to this criterion, we can build BSM dimension-six operators with arbitrary

powers of the (dimensionless) spurions that respect the SU(3)5 symmetry and its break-

ing (
Q̄i
L

[
Y u (Y u)†

]n
i ̸=j

γµQ
j
L

)2
≈ λ2n

t V
∗
tiVtj

(
Q̄i
LγµQ

j
L

)2
. (2.26)

Here we have moved to the mass basis (1.32) where the down-quark is diagonal, and we

have made use of the smallness of all the Yukawa matrices except for the top one, and

the fact that the off-diagonal elements of the CKM matrix are very suppressed10. As a

consequence, the same type of suppression in the SM is enforced to the NP amplitude.

This shows in both ∆F = 1 and ∆F = 2 amplitudes (Appendix (B))11

A∆F=1(fi −→ fj +X) = ASM
∆F=1 +ANP

∆F=1

= yfj
V ∗
tiVtj

v√
2
CijSM
Λ2

SM
+ v√

2
yfj
V ∗
tiVtj
CijNP
Λ2

NP

= ASM
∆F=1

[
1 + a1

Λ2
SM

Λ2
NP

]
,

(2.27)

and
A∆F=2(Mi −→Mj) = ASM

∆F=2 +ANP
∆F=2

= y2
t (V ∗

tiVtj)2 C
ij
SM

Λ2
SM

+ y2
t (V ∗

tiVtj)2 C
ij
NP

Λ2
NP

= ASM
∆F=2

[
1 + a2

Λ2
SM

Λ2
NP

]
,

(2.28)

where yf =
√

2mf/v, ΛSM = 4πv ≈ 3 TeV and a1,2 = CijNP/C
ij
SM ∼ O(1). Thus, with

the experimental condition that
∣∣∣ANP

∣∣∣ < ∣∣∣ASM
∣∣∣, the bound on the NP scale would be

within the reach of LHC, even with CNP ∼ 1 which would correspond to a strongly

coupled NP sector.

The (real) parameters ai do not depend on the flavor; they depend only on the con-

10
[
Y u (Y u)†

]n

i ̸=j
= y2n

u V ∗
uiVuj + y2n

c V ∗
ciVcj + y2n

t V ∗
tiVtj and yu,c,t =

√
2

v
mu,c,t.

11For ∆F = 1 operator, the additional factor of spurions is Y d(Y u)†Y u.
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sidered operator, meaning that flavor-changing transitions of the same type such as

b −→ sγ and s −→ dγ, which have the same structure of the dimension-six operator

(eFµνHQ̄i
Lσ

µνdjR), would have the exact same deviation. Thus, a positive evidence of

NP exhibiting the flavor-universality pattern in transitions of the same type, would be

a valid proof of the MFV hypothesis. While the validity of this hypothesis is still far

from being proved from data, the MFV framework, not only seems to be a natural so-

lution to the flavor problem, but also serves as a predictive approach in flavor physics.

Moreover, it can demonstrate, in case falsified, that not only there is physics beyond

the SM, but also it would be a clear signal of new sources of flavor symmetry breaking

beyond (in addition to) the Yukawa couplings.

2.2 Model dependant approach

As the anomalies fit into the coherent patterns of lepton flavor universality violation

beyond the SM, it would be natural to call for an extension of this latter where new

particles and new interactions are involved. In fact, many scenarios that involve ei-

ther scalar/vector bosons and fermions have been proposed. Most of the successful

candidates can be cast into two sets:

• Leptoquarks (LQs), which are hypothetical particles that carry color and can

turn quarks into leptons and vice-versa. They were first proposed in the context of

the Pati-Salam model [95] and the Grand Unified Theories (GUTs) [96,97]. LQs

can be either SU(2)L scalars or vectors in the singlet and triplet representations

of the SU(2)L gauge group. Among the various scenarios of scalar leptoquarks

that were proposed [98], the most favored ones are the weak singlet scalar LQ

with hypercharge 1/3, namely S1 ∼ (3̄, 1)1/3, and the triplet of scalar LQ states

with hypercharge 1/3, S3 ∼ (3̄, 3)1/3, where the LQs are specified by their SM

quantum numbers (SU(3)C , SU(2)L)Y with the electric charge Q being the sum of

the weak hypercharge Y and the third weak isospin component I3. Their relevant
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interaction Lagrangians read respectively

LS1 = Y ij
L Q

cL
i iτ2L

L
j S1 + Y ij

R u
cR
i l

R
j S1 + h.c.,

LS3 = Y ij
L Q

cL
i iτ2L

L
j (τkSk3 ) + h.c.,

(2.29)

where YL,R are the Yukawa matrices, τ are the Pauli matrices and Sk3 is the k

component of the LQ triplet. Among the vector LQs that were proposed, the weak

singlet leptoquark U1 ∼ (3̄, 1)2/3 appears to stand out as an excellent candidate as

it can provide a simultaneous explanation for both anomalies [24, 27]. The weak

triplet LQ U3 ∼ (3, 3)2/3 also can accommodate the anomaly RK(∗) in a similar

way to that of the U1 model [99]. Their most general Lagrangians consistent with

the SM gauge symmetry read respectively

LU1 = gijLQ
L
i γµU

µ
1 L

L
j + gijRd

R
i γµU

µ
1 l
R
j + h.c.,

LU3 = gijLQ
L
i γµ(τkUkµ

3 )LLj + h.c.,
(2.30)

where gijL,R are the couplings and Uk
3 is the k component of the U3 LQ in SU(2)L

space.

• Color-less vectors, which can either be electrically neutral or singly charged

(QCD neutral) heavy spin-1 particles. The effective operators are obtained by

integrating out heavy color-less SU(2)L singlet Z ′
µ ∼ (1, 1)0 and triplet W ′

µ ∼

(1, 3)0 coupled weakly to the SM fermion singlet and triplet currents, respectively

[17]. Within this scenario, the process is mediated by heavy exotic gauge bosons

whose couplings depend on the generation.

In order to cope with the electroweak’s and the purely leptonic observables’ constraints,

some degree of model-building effort is required. For this purpose, a model of a par-

ticular interest, namely the 331 model, that embeds heavy gauge bosons (W ′, Z ′) is

proposed as a possible BSM scenario that could accommodate the B anomalies in both

the NC and the CC sectors.
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Chapter 3

Lepton flavor universality violation

in the 331 model

Among the many scenarios that have been proposed to extend the SM is one that is

based on the gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)X [100–102]. This set constitutes

one of the simplest extensions of the SM, where this latter is recovered after a first

spontaneous symmetry breakdown that occurs at a heavier ΛNP. Subsequently, the SM

gauge group gets broken down spontaneously in its turn to U(1)em at the lower scale

ΛEW.

In 331 models, the SM gauge group is extended to the broader SU(3)C⊗SU(3)L⊗U(1)X
with SU(3)L generators being T̂ a = λa

2 (λa are the Gell-Mann matrices, with a = 1, .., 8)

and T̂ 9, defined as T̂ 9 = 1√
6

1 generates U(1)X (1 is the 3 × 3 unit matrix). The

hypercharge operator Ŷ is defined in terms of the generators of the new gauge group

by requiring that it commutes with all its generators, i.e., it would have only terms

proportional to T̂ 8 and U(1)X ’s generator X

Ŷ

2
= βT̂ 8 +X1, (3.1)

1The U(1)X generator satisfies the same normalization relation as the eight generators of SU(3)L:
Tr[T̂ aT̂ b] = δab

2 .

44



Lepton flavor universality violation in the 331 model

with β is a parameter that distinguishes different 331 models, and

T̂ 8 = 1
2
λ̂8 = 1

2
√

3
diag(1, 1,−2). (3.2)

In analogy with the SM, we introduce the electric charge operator defined as a linear

combination of the diagonal generators of the group

Q̂ = T̂ 3 + Ŷ

2
, (3.3)

with T̂ 3 = 1
2
λ̂3 = 1

2
diag(1,−1, 0). The parameter β, encodes the way in which the

SU(3)L ⊗ U(1)X is embedded in SU(2)L ⊗ U(1)Y as it controls the relation between

the hypercharge and the generator T̂ 8 of SU(3)L. From Eqs. (3.1) and (3.3), its value

reads

β = ∓ 1√
3

(
2Q′ − 1

3

)
, (3.4)

where Q′ is the electric charge of the exotic (third additional massive) quark2. Thus,

by choosing to identify the first two components of the SU(3)L triplet (or antitriplet)

with the SM doublet, and by demanding that no new quark introduced in the model

has exotic charges, value of β is restricted to ± 1√
3

3. The value of β plays a key role in

distinguishing various versions of the model and only for some of its values, the gauge

bosons turn out to have integer charges.

Requirement of quantum-anomalies cancellation puts stringent constrains for 331 model

building. For a theory to be anomaly-free, several relations among the fermion charges

have to be satisfied [103–105], namely

[SU(3)C ]2 ⊗ U(1)X ⇒ 3
∑
Q

XL
Q =

∑
q

XR
q , (3.5)

2In the of the leptons, β = ∓ 1√
3

(2Q′ + 1), with Q′ being the electric charge of the exotic lepton.
3The value ±

√
3, commonly chosen in the literature, introduces exotic electric charges for the third

entry of the quark triplet (or antitriplet) 5/3 and −4/3.
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[SU(3)L]3 anomaly ⇒ N3 = N3̄, (3.6)

[SU(3)L]2 ⊗ U(1)X ⇒ 3
∑
Q

XL
Q +

∑
l

XL
l = 0, (3.7)

[Grav]2 ⊗ U(1)X ⇒ 9
∑
Q

XL
Q + 3

∑
l

XL
l = 3

∑
q

XR
q +

∑
s

XR
s , (3.8)

[U(1)X ]3 ⇒ 9
∑
Q

(XL
Q)3 + 3

∑
l

(XL
l )3 = 3

∑
q

(XR
q )3 +

∑
s

(XR
s )3, (3.9)

where Q and q denote the quark left-handed generations and the corresponding singlets,

respectively. L denotes the lepton multiplets and s the corresponding singlets. In order

to cancel the [SU(3)L]3 anomaly, equation (3.6) states that the number of triplets and

antitriplets has to be equal. However, LFUV couplings for the gauge bosons cannot be

generated unless we introduce additional lepton generations. In fact, if we call NQ, NL

(NQ̄, NL̄) the number of quark, lepton generations transforming as 3 (3̄), respectively,

(3.6) yields

3NQ +NL = 3NQ̄ +NL̄. (3.10)

Several possibilities arise. Assuming that all three quark families transform in the same

way would lead to at least nine lepton generations all transforming in the opposite way.

This would not lead to the generation of different couplings between the leptons and

the gauge bosons. Hence, LFUV arises only when quark families transform differently

from one another. Assuming that two quark families transform as 3̄, Eq. (3.10) yields

NL −NL̄ = 3. (3.11)

If we assume that the lepton generation number is three, then they would all trans-

form in the same way. In this minimal construction [106], usually considered in the

literature, there would be no LFUV couplings generated from identical couplings of the

gauge bosons to all lepton generations as they transform identically. Then, additional

lepton generations have to be embedded in the theory. The minimal possibility to solve

equation (3.11) is to increase the number of lepton families by two, so that NL = 4 and
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NL̄ = 1 generates LFUV in the gauge couplings to leptons.

It is worth to stress that neither the minimal construction, which is based on placing

the left-handed lepton doublets in SU(3)L triplets, nor the flipped set-up [107], which is

based on perfect quark family replication, generates LFUV from couplings of the gauge

bosons to the fermions. In fact, in both scenarios, the gauge bosons couple identically

to all lepton and quark families, respectively. In order to generate LFUV from different

couplings of the gauge bosons to all fermionic fields, we adopt an anomaly-free non-

minimal 331 set where the leptons are grouped in no less than five generations.

3.1 The SU(3)C⊗SU(3)L⊗U(1)X model with β = 1/
√

3

In order to generate potential LFUV effects, we adopt a non-minimal construction that

ensures the cancellation of the anomalies and allows for different representations for

the lepton generations. By demanding that no introduced degree of freedom has exotic

electric charge, we choose β = 1√
3

.

3.1.1 Fields and representations

In what follows, the SM fermions are labeled with lower cases and the exotic ones with

upper cases. We introduce the left-handed components of the fields together with the

right-handed partners of the charged ones where the representations of the particles are

referred to with the notation (SU(3)C , SU(3)L, U(1)X)4

(i) three generations of quarks

QL
m =


dm

−um
Um

 ; uRm; dRm; UR
m, (m = 1, 2) , (3.12)

4The fields in the antitriplet are fixed with the minus sign in order to reproduce the SM couplings.
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with (SU(3)C , SU(3)L, U(1)X) =
(
3, 3̄, 1

3

)
, (3, 1, 2/3) , (3, 1,−1/3) , (3, 1, 2/3).

QL
3 =


u3

d3

D3

 ; uR3 ; dR3 ; DR
3 , (3.13)

with (SU(3)C , SU(3)L, U(1)X) = (3, 3, 0) , (3, 1, 2/3) , (3, 1,−1/3) , (3, 1,−1/3).

(ii) five generations of leptons

lL1 =


e−L

1

−νL1
NL

1

 ; e−R
1 , (3.14)

with (SU(3)C , SU(3)L, U(1)X) =
(
1, 3̄,−1/3

)
, (1, 1,−1).

lLn =


νLn

e−L
n

E−L
n

 ; e−R
n ; E−R

n , (n = 2, 3) , (3.15)

with SU(3)C×SU(3)L×U(1)X quantum numbers (1, 3,−2/3) , (1, 1,−1) , (1, 1,−1).

lL4 =


NL

4

E−L
4

F−L
4

 ; F−R
4 , (3.16)

with (SU(3)C , SU(3)L, U(1)X) = (1, 3,−2/3) , (1, 1,−1).

lL5 =


(
E−R

4

)c
NL

5

PL
5

 , (3.17)
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with (SU(3)C , SU(3)L, U(1)X) = (1, 3, 1/3).

This construction contains no positively charged leptons. They would have appeared,

however, in lL5 had we considered the original set (Model B in Ref. [104]). In fact,

originally the model contained fifteen leptons instead of fourteen (eight charged and

seven neutral ones) with one positively charged lepton belonging to the lL5 triplet that

had to be identified with the charge conjugate of the right handed partner of the fourth

generation. This procedure ensures the removal of an unwanted electroweak-scale mass

term of a charged exotic particle that would appear after the symmetry gets broken

down spontaneously (see Section (3.1.2)). In what follows, it proves easier to discuss

the spectrum of the theory after the introduction of the flavor vectors where the fields

of the same electric charge are gathered

U = (u1, u2, u3, U1, U2)T ,

D = (d1, d2, d3, D3)T ,

f−
L =

(
e−L

1 , e−L
2 , e−L

3 , E−L
2 , E−L

3 , E−L
4 , F−L

4

)T
,

f−
R =

(
e−R

1 , e−R
2 , e−R

3 , E−R
2 , E−R

3 , E−R
4 , F−R

4

)T
,

NL =
(
νL1 , ν

L
2 , ν

L
3 , N

L
1 , N

L
4 , N

L
5 , P

L
5

)T
.

(3.18)

The right handed partners for the neutral particles, which would be pure singlets with

respect to the whole gauge group, are left out of the discussion as they are of no relevance

to our analysis. They would be of improtance, though, when we discuss neutrino masses

(see Section (3.1.3)).

3.1.2 Scalar sector and particles’ spectrum

The 331 models experience two stages of SSBs: one occuring at the heavier scale ΛNP,

after which the SM is recovered and all exotic charged particles acquire mass, and

another one that occurs at the lower energy scale ΛEW. These models feature an

extended Higgs sector that triggers the two symmetry breakdowns leading to heavy
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exotic new degrees of freedom as well as the usual SM’s.

The scalar sector

The model undergoes two stages of spontaneous symmetry breakings (SSB). The first

step leads to recovering the SM as the low-energy effective theory deriving from the 331

model, while the subsequent step is the familiar SM SSB realized at the electroweak

scale. The overal pattern of SSB follows the scheme

SU(3)C ⊗ SU(3)L ⊗ U(1)X
⟨Φ1⟩−→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y

⟨Φ2⟩−→ SU(3)C ⊗ U(1)Q,

where Φ1 and Φ2 are the two scalars whose vevs trigger the two stages of SSB. In the first

breakdown, five gauge fields acquire mass of the order of ⟨Φ1⟩, and in the second (elec-

troweak) breakedown, three gauge fields acquire mass proportional to ⟨Φ2⟩. The remain-

ing gauge field which is associated with the unbroken generator Q remains masseless

and is identified with the photon. In the first transition SU(3)L⊗U(1)X
⟨Φ1⟩−→ SU(2)L⊗

U(1)Y , the vev of Φ1 should accomplish the following conditions

[
T̂ 1,2,3
L , ⟨Φ1⟩

]
=
[
Q̂, ⟨Φ1⟩

]
= 0, (3.19)

which means that five gauge bososns acquire mass of the order of ⟨Φ1⟩, while the

other generators give a non-vanishing result when acting on the vacuum. The second

transition SU(2)L⊗U(1)Y
⟨Φ2⟩−→ U(1)Q, triggered by the vev of Φ2, the conditions that

should be satisfied read

[
T̂ 1,2,3
L , ⟨Φ2⟩

]
̸= 0,

[
Q̂, ⟨Φ2⟩

]
= 0, (3.20)

where three gauge bosons gain mass and the only generator that leaves the vacuum

invariant should beQ. Since the goal is to generate masses to the fermions and the gauge

bosons (except for the photon), representations for the scalar fields are constrained from

the Yukawa terms i.e. couplings between a scalar field and two fermions, in order to

obtain appropriate mass terms after the SSB. Since the fermions transform either as 3
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or as a 3̄ under SU(3)L, possible representations of the (SU(3)C singlet) scalar fields

are built from gauge invariant terms for the fermion-fermion-scalar couplings

ψ̄iLψRΦ : 3̄⊗ 1⊗ Φ = 1 ⇒ Φ = 3,

ψ̄iL(ψL)cΦ : 3̄⊗ 3̄⊗ Φ = 1 ⇒ Φ = 3̄⊕ 6,

ψ̄R(ψR)cΦ : 1⊗ 1⊗ Φ = 1 ⇒ Φ = 1,

ψ̄R(ψiL)cΦ : 1⊗ 3̄⊗ Φ = 1 ⇒ Φ = 3.

(3.21)

Thus, in order to generate masses for the fermions, the scalar field can only be a singlet,

a triplet or a sextet, although, after the two stages of SSB, the vev of the singlet scalar

will never give rise to a mass term for the gauge bosons or the fermions, because the

electromagnetic invariance makes it a scalar under U(1)X5. Thus, we will omit this

possibility. For the first transition 331 → 321, we denote with χ (χ∗) and Sa the

triplet (antitriplet) and sextet, respectively, whose vevs and U(1)X charges are aligned

according to the conditions (3.19) that ensure the non-breaking of SU(2)L nor U(1)Q
at the scale identified with ⟨Φ1⟩ (Φ1 ∈ {χ, χ∗, Sa})6, and impose a requirement on the

quantum numbers of the representations. Their vevs align in the following way [108]

⟨χ⟩ = 1√
2


0

0

u

 ∼ (1, 3, 1
3

), ⟨Sa⟩ =


0 0 0

0 0 0

0 0 a

 ∼ (1, 6, 2
3

). (3.22)

The subsequent SSB 321 → 31 occurs at the electroweak energy scale. It reproduces

the EWSB of the SM and is accomplished by means of two triplets denoted η and ρ and

three sextets Sb,c,d (Φ2 ∈ {η, ρ, Sb, Sc, Sd}). Their vevs and U(1)X charges are aligned

according to the condition (3.20). The electric charge of the components of the scalar

5A singlet always commutes with the electric charge generator Q.
6The action of the SU(3) matrices T a on a sextet S is defined as: T̂ aS = ST a + (T a)T S.
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fields of the representations 3, 3̄, and 6 are respectively given by [108]

Q3 =



2
3

+XΦ2

−1
3

+XΦ2

−1
3

+XΦ2

 , Q3̄ =


−2

3
−XΦ∗

2

1
3
−XΦ∗

2

1
3
−XΦ∗

2

 ,

Q6 =



4
3

+XΦ2

1
3

+XΦ2

1
3

+XΦ2

1
3

+XΦ2 −
2
3

+XΦ2 −
2
3

+XΦ2

1
3

+XΦ2 −
2
3

+XΦ2 −
2
3

+XΦ2

 .
(3.23)

The right alignment is chosen by imposing a zero charge to each representation and

verify if U(1)X-invariant Yukawa terms involving these scalar fields can be built. The

vevs responsible for the EWSB are thus aligned as follows

⟨η⟩ = 1√
2


0

w2

w3

 ∼ (1, 3, 1
3

), ⟨ρ⟩ = 1√
2


v

0

0

 ∼ (1, 3,−2
3

),

⟨ Sb⟩ =


b 0 0

0 0 0

0 0 0

 ∼ (1, 6,−4
3

), ⟨ Sc⟩ =


0 c1 c2

c1 0 0

c2 0 0

 ∼ (1, 6,−1
3

),

⟨ Sd⟩ =


0 0 0

0 d1 d2

0 d2 d3

 ∼ (1, 6, 2
3

).

(3.24)

Gauge bosons’ spectrum

Despite the fact that the fermion content may vary significantly from one construction

to another, all SU(3)L ⊗ U(1)X models have the same gauge sector. The eight gauge

bosons of the SU(3)L group, which transform according to its adjoint representation,

are denoted as W a
µ , a = 1, ..8, while the gauge boson of the U(1)X group is denoted

by Xµ. Denoting by g the coupling constant of the fermions to the gauge bosons of
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the SU(3)L group and by gX the coupling constants of the fermions to Xµ, and by X

the quantum number corresponding to U(1)X , the covariant derivatives acting on the

triplets, antitriplets and singlets, respectively, read

DµψL = ∂µψL − igW a
µ T̂

aψL − igXXXµT̂
9ψL,

Dµψ̄L = ∂µψ̄L + igW a
µ (T̂ a)T ψ̄L − igXXXµT̂

9ψ̄L,

DµψR = ∂µψR − igXXXµT̂
9ψR,

(3.25)

where the generators in the case of antitriplets are ¯̂
Ta = −(T̂ a)T 7. The matrix W a

µ T̂
a

is arranged as follows

Wµ = W a
µ T̂

a = 1
2


W 3
µ + 1√

3
W 8
µ

√
2W+

µ

√
2Y QY

µ

√
2W−

µ −W 3
µ + 1√

3
W 8
µ

√
2V QV

µ

√
2Y −QY

µ

√
2V −QV

µ − 2√
3
W 8
µ

 , (3.26)

where the following definitions have been introduced

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ),

Y ±QY
µ = 1√

2
(W 4

µ ∓ iW 5
µ),

V ±QV
µ = 1√

2
(W 6

µ ∓ iW 7
µ).

(3.27)

As mentioned earlier, the value of the parameter β plays a key role in the model as it

controls, not only the charges of the new (exotic) fermions, but also the electric charges

of the heavy gauge bosons. In fact, from the action8 of the electric charge operator

(3.3) on the gauge bosons matrix Q̂WWµ = [Q,Wµ] = QGBWµ we can read the charges

7T is for transpose.
8The action of operators should be distinguished from the simple multiplication with the corre-

sponding matrix.
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of the entries in Eq. (3.26) [109]

QGB =


0 0 1

2
+ β

√
3

2
−1 0 −1

2
+ β

√
3

2
−1

2
− β
√

3
2

1
2
− β
√

3
2

0

 . (3.28)

It is clear that only for some values of β, the gauge bosons have integer electric charges.

For our specific choice of β = 1√
3 , the matrix W a

µ T̂
a is arranged as follows

Wµ = 1
2


W 3
µ + 1√

3
W 8
µ

√
2W+

µ

√
2Y +

µ

√
2W−

µ −W 3
µ + 1√

3
W 8
µ

√
2V +0

µ

√
2Y −

µ

√
2V −0

µ − 2√
3
W 8
µ

 , (3.29)

where the spectrum exhibits the two (SM’s) charged and three neutral gauge bosons,

plus other four exotic ones, which depending of the chosen value of β9, turn out to be

two singly charged Y ± and two additional neutral bosons V 0 and V −0.

At the first SSB, five gauge fields acquire mass of the order of ΛNP, whereas, three of

the remaining four gauge bosons will become massive at the electroweak scale. These

stem from the covariant derivative in the Higgs Lagrangian

LHiggs ∝ (Dµχ)† (Dµχ) + (Dµη)† (Dµη) + (Dµρ)† (Dµρ) +
∑

i=a,b,c,d
Tr

{
(DµSi)† (DµSi)

}
.

(3.30)

9For comparison, for β =
√

3, the four additional bosons are two singly charged bosons V ± and
two doubly charged ones Y ++ and Y −−.
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The masses of the W±, Y ±
µ and V 0

µ read

M2
W± = g2

4
[
v2 + w2

2 + 2
(
b2 + 2c2

1 + c2
2 + d2

1 + d2
2

)]
,

M2
Y ± = g2

4
[(
u2 + 2a2

)
+ v2 + w2

3 + 2
(
b2 + c2

1 + 2c2
2 + d2

2 + d2
3

)]
,

M2
V 0 = g2

4
[(
u2 + 2a2

)
+ w2

2 + w2
3 + 2

(
d2

1 + 2d2
2 + d2

3

)]
.

(3.31)

In a first step, four gauge bosons W 4
µ , W 5

µ (Y ±
µ ), W 6

µ and W 7
µ (V 0

µ ) become massive

while the two neutral gauge bosons W 8
µ and Xµ mix together giving rise to a massive

Z
′
µ and a massesless one Bµ. The mixing angle is denoted by θ331

Z ′
µ

Bµ

 =

 cos θ331 sin θ331

− sin θ331 cos θ331


Xµ

W 8
µ

 , (3.32)

where

sin θ331 = g√
g2 + g2

X

18

and cos θ331 =
gX

3
√

2√
g2 + g2

X

18

. (3.33)

Here, g and gX are the gauge coupling constants.

After the EWSB, the neural bosons W 3
µ and Bµ mix together with a mixing angle θW

(Weinberg angle) to yield a massless Aµ identified with the photon, and a massive Zµ

Zµ
Aµ

 =

cos θW − sin θW

sin θW cos θW


W 3

µ

Bµ

 , (3.34)

with

M2
Z = g2

4 cos θW

[
v2 + w2

2 + 2
(
b2 + 2c2

1 + c2
2 + d2

1 + d2
2

)]
. (3.35)

The two mixing angles θ331 and θW and the two gauge coupling constants obey the

relations

cos θ331 = 1√
3

tan θW and g

gX
= tan θ331

3
√

2
. (3.36)
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From Eqs. (3.35) and (3.31), we get, as in the SM, M2
W/M

2
Z = cos θW , which justifies

the identification of the angle θW with the Weinberg angle.

The Yukawa sector

After the two stages of spontaneous symmetry breaking, all (charged) fermion fields

of the model get mass from their coupling to the Higgs mutliplets. The SSB pattern,

though, should generate heavy masses to the exotic fields only after the first SSB which

occurs at the high energy scale ΛNP, leaving only three masseless fermion fields whose

mass generation should be due to the second electroweak braking.

• Quark mass terms

The Yukawa Lagrangian containing all gauge invariant quark-quark-scalar terms

responsible for the quark masses is

LqY =
(
Q̄m
L χ

∗Y u
mi + Q̄m

L η
∗jumi + Q̄3

Lρy
u
3i

)
UR
i +

(
Q̄3
LχY

d
3j + Q̄3

Lηj
d
3j + Q̄m

L ρ
∗ydmj

)
DR
j ,

(3.37)

where

UR
i =

(
uR1 , u

R
2 , u

R
3 , U

R
1 , U

R
2

)T
.

DR
j =

(
dR1 , d

R
2 , d

R
3 , D

R
3

)T
.

Y u,d, yu,d and ju,d are the Yukawa couplings for χ, ρ and η, respectively.

The mass matrix of the quarks can be written in terms of the flavor vectors

introduced in Eq. (3.18) as

Mq = ŪLMuUR + D̄LMdDR, (3.38)
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where

Mu = 1√
2



ju11w1 ju12w1 ju13w1 ju14w1 ju15w1

ju21w1 ju22w1 ju23w1 ju24w1 ju25w1

yu31v yu32v yu33v yu34v yu35v

Y u
11u+ ju11w2 Y u

12u+ ju12w2 Y u
13u+ ju13w2 Y u

14u+ ju14w2 Y u
15u+ ju15w2

Y u
21u+ ju21w2 Y u

22u+ ju22w2 Y u
23u+ ju23w2 Y u

24u+ ju24w2 Y u
25u+ ju25w2


,

(3.39)

and

Md = 1√
2



yd11v yd12v yd13v yd14v

yd21v yd22v yd23v yd24v

jd31w2 jd32w2 jd33w2 ju34w2

Y d
31u+ jd31w3 Y d

32u+ jd32w3 Y d
33u+ jd33w3 Y d

34u+ jd34w3


. (3.40)

The diagonalization of both mass matrices before the EWSB (in the limit v =

w1 = w2 = 0) leaves three masseless quarks for both the up and down components,

meaning that after the SU(3)L SSB, all the new exotic quarks acquire mass of

the ΛNP scale, and that the three remaining masseless (SM) quarks should get

mass at the electroweak scale. This is why such exotic particles have not yet been

observed at the electroweak scale.

• Charged lepton mass terms

The model considered with β = 1/
√

3 consisted originally of five exotic charged

leptons instead of four defined in Eqs. (3.15), (3.16) and (3.17), where one posi-

tively charged lepton belongs to the fifth generation

lL5 =


E+L

5

PL
5

NL
5

 ∼ (1, 3, 1/3) , E+R
5 ∼ (1, 1, 1) .

After the first SSB, the Yukawa Lagrangian containing all gauge invariant lepton-
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lepton-scalar terms for the negatively charged leptons reads

Ll−Y ⊃ Y χ∗l̄Ln (lL5 )c + Y χl̄Ln
(
e−R
m + E−R

n + E−R
5

)
, (3.41)

where Y is the Yukawa coupling of the left-handed lepton fields ln with the scalar

χ10, n = 2, 3, 4 and m = 1, 2. The combination of SU(3)L triplets and antitriplets

is

ϵijk(χ∗i)l̄Ljn (lL5 )ck. (3.42)

Introducing the flavor vector for the negatively charged leptons

l− = (e1, e2, e3, E2, E3, E4, F4, E5) , (3.43)

the (TeV scale) mass matrix for the negatively charged leptons at this point reads

MTeV
l− = 1√

2



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −Y28u

0 0 0 0 0 0 0 −Y38u

Y41u Y42u Y43u Y44u Y45u Y46u Y47u Y48u

Y51u Y52u Y53u Y54u Y55u Y56u Y57u Y58u

0 0 0 0 0 0 0 −Y68u

Y71u Y72u Y73u Y74u Y75u Y76u Y77u Y78u

0 0 0 0 0 0 0 0



. (3.44)

As it appears in this matrix, the degeneracy of the 0 eigenvalue is greater than

three, meaning that the number of the degrees of freedom that should acquire mass

after the electroweak symmetry breaking is more than the three SM’s charged

leptons. Thus, because the spectrum should contain no light particles apart from

the SM ones, we have to get rid of such presence. To do so, we identify the

10The Yukawa terms that can be built with the sextet lead to Majoranna masses for the exotic
neutral leptons N5 and N1. They are of the form Sl̄5(lc

5 + l1).
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E+L
5 with the charge conjugate of the right handed component of E−

4 . As a

result, the right handed partner of E−
4 should belong to the lepton triplet lcL5

((E−R
4 )c ∼ (1, 3, 1

3)) rather than being a singlet11. The spectrum thus contains

three EW mass (SM) plus four TeV mass exotic charged leptons.

With this assumption, the most general Yukawa Lagrangian containing all gauge

invariant lepton-lepton-scalar terms responsible for the charged lepton masses

after the two stages of SSB reads

Ll−Y =
[
l̄Ln (yniχ+ kniη) + l̄L1 h1i

ρ∗
]
lRi + l̄Ln l

L
1Cn1Sc + l̄Ln l

cL
5 (Yn5χ

∗ +Kn5η
∗ + Cn5Sc) ,

(3.45)

where n = 2, 3, 4 and

lRi =
(
e−R

1 , e−R
2 , e−R

3 , E−R
2 , E−R

3 , E−R
4 , F−R

4

)
.

yni, kni and hni are the Yukawa couplings of the left-handed n and the right-

handed charged lepton fields i with the scalars χ, η and ρ, respectively.

Ynn and Knn are the Yukawa couplings of the left-handed lepton fields n

with the scalars χ and η respectively.

Cnn are the Yukawa couplings of the left-handed lepton fields n with the

sextet Sc.

The mass matrix of the charged leptons reads

M
l− =

1
√

2



h11v h12v h13v h14v h15v 0 h17v

k21w2 + C21c1 k22w2 k23w2 k24w2 k25w2 −Y26u − k26w3 + C26c1 k27w2

k31w2 + C31c1 k32w2 k33w2 k34w2 k35w2 −Y36u − k36w3 + C36c1 k37w2

y41u + y41u + k41w3 + C41c2 y42u + k42w3 y43u + k43w3 y44u + k44w3 y45u + k45w3 k46w2 + C46c2 y47u + k47w3

y51u + k51w3 + C51c2 y52u + k52w3 y53u + k53w3 y54u + k54w3 y55u + k55w3 k56w2 + C56c2 y57u + k57w3

k61w2 + C61c1 k62w2 k63w2 k64w2 k65w2 −Y66u − k66w3 + C66c1 k67w2

y71u + k71w3 + C71c2 y72u + k72w3 y73u + k73w3 y74u + k74w3 y75u + k75w3 k76w2 + C76c2 y77u + k77w3


(3.46)

11This is the only possible set for β = 1/
√

3. Any other attempt to limit the number of the extra
degrees of freedom would lead to Yukawa terms that, despite being allowed by symmetry arguments,
are forbidden by mass scale arguments (e.g. identifying F −L

4 with e−R
1 would lead to a TeV Yukawa

term ∝ e−R
1 e−R

2 ).
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As in the quark case, the diagonalization of the mass matrix before the EWSB (in the

limit v = w2 = w3 = c1 = c2 = 0) shows that the number of the masseless charged

leptons is exactly three which is the number of the SM leptons. This means that all

exotic leptons acquire mass of the ΛNP scale after the SU(3)L SSB. Again, this is why

such heavy leptons have not been observed at the electroweak scale.

Thus, the Yukawa Lagrangian that can be built with the scalar fields discussed above

meets the phenomenological expectations. In fact, it provides (heavy) masses to all

exotic degrees of freedom after the SU(3)L SSB before undergoing another transition

at the electroweak scale where all the remaining SM particles acquire (light) masses.

When we move to the mass basis, the diagonalization of the up-type, down-type and

lepton mass matrices is performed with a singular value decomposition (SVD) where

each matrix requires two unitary matrices that rotate the interaction and mass eigen-

states. We perform the bi-unitary transformation on both Mq and Ml

V (q)†
MqW

(q) = M ′(q), U (l)†
MlW

(l) = M ′(l). (3.47)

Here M ′(q) and M ′(l) are the diagonal mass matrices. V (q), U (l) and W (f) are unitary

rotation matrices relating (unprimed) fermion interaction eigenstates and (primed) mass

eigenstates

qL = V (q)q′L, lL = U (l)l′L, fR = W (f)f ′R. (3.48)

They satisfy
V (q)†

MqM
†
qV

(q) = W (q)†
MqM

†
qW

(q) = M
′(q)2

,

U (l)†
MlM

†
l U

(l) = W (l)†
MlM

†
lW

(l) = M
′(l)2

,
(3.49)

where q and l stand for the quark and the lepton fields, respectively, while f stands for

all fermion fields. As a result, M ′(u,d) and M ′(l) are the diagonal 5 × 5, 4 × 4 and the

7 × 7 mass matrices for the up-type (3.39), down-type (3.40) quarks and the charged

leptons (3.46), respectively.
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3.1.3 Neutrino mass in the 331 model

The non-vanishing neutrino masses is an indisputable evidence of physics beyond the

standard model. In the absence of any direct evidence of their mass, the observation

of neutrino oscillation suggests that most likely the new physics energy range Λ is well

above the electroweak scale [110–116]. Within the SM, as a masseless particle would

not be able to change its chirality, neutrinos were introduced as purely masseless and

strictly left-chiral fermions for which no gauge-invariant renormalizable mass term can

be constructed. Consequently, in the SM there is no mixing in the lepton sector. In

this way, neutrino masses and lepton mixing would be a form of manifestation of NP.

As bounds on their masses are led to by decay processes of the leptons12, their (small)

values are accommodated within BSM scenarios and even in the non-minimal version of

the SM by either introducing right-handed (RH) neutral singlets or breaking the lepton

number L, respectively. As any other fermion, neutrino Dirac mass terms are generated

through the coupling of the left- and the (introduced) right-handed fields (1.22). They

stem from the gauge-invariant Yukawa Lagrangian

LYukawa ∝ Y ij
ν L̄

L
i Hν

j
R + h.c.

SSB−→ ν̄Li M
ij
ν ν

R
j + h.c., with M ij

ν = h√
2
Y ij
ν , (3.50)

wher h is the vev of the scalar mutiplet of the BSM theory. Since they have no electric

charge, neutrino masses have been able to be generated, however, without the addition

of their right-handed partners. In fact, within the SM, it was noted by Weinberg [119]

and inpendently by Wilczek and Zee [120] that small Majoranna neutrinos masses could

be generated through the dimension-five effective operator

Oν = LcLia L
L
jbΦkΦl (fijεakεbl) , (3.51)

12The study of electron energy spectrum in tritium β-decay, based on the analysis of the Kurie
plot, has led to the bound mνe

< 2.2 eV (95%C.L) [117]. Upper bounds on the masses νµ and ντ are
mνµ

< 170 keV (90%C.L) and mντ
< 18.2 MeV (95%C.L) [118]. They are obtained from the decays

of π-mesons and τ -leptons, respectively.
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where i, j are flavor indices, a, b, l, k are isospin indices and fij are couplings of the order

of Λ−1. This is the only dimension-five operator allowed by the SM’s gauge symmetry.

Neutrino masses and mixings are generated when the neutral component of the scalar

doublet Φ develops its vev. The neutrino mass matrix elements will read

M ij
ν = fij⟨Φ⟩2

Λ
. (3.52)

Small Majoranna masses are thus generated through the see-saw mechanism if Λ ∼

109 − 1013 GeV [4]. The realization of this approach can easily be implemented in

the 331 model as well. In fact, it has been shown that seesaw neutrino masses could

be generated from an effective dimension-five operator that is built of the leptonic

and the scalar triplets [121–123]. Moreover, within the context of 331 models with

RH neutrinos, small neutrino masses can also be generated. Models where the lepton

triplets are of the form (ν, l, νc)L, with the RH neutrinos νcR = (νc)L introduced as

the third component of the triplets, have been extensively studied [124–126]. Neutrino

masses are generated at the tree level with the three Higgs triplets. The neutrino

spectrum, however, shows to be unrealistic as there is only one squared mass-splitting.

In fact, the spectrum contains three Dirac fields with one massless and two degenerate

in mass ∼ hνv/
√

2, with hν being the Yukawa coupling and v the electroweak-scale vev,

and massless Majoranna fields νL and νR. The addition of the Higgs sextet, however,

proves able to generate small neutrino masses via a type-II seesaw mechanism [127] and

provides a possible explanation of the large splitting ∆m2
atm ≫ ∆m2

sol with no need of

fine-tuning [128,129]. This could be realized within our framework since neutral leptons

interaction terms with the scalar sextet could be generated. However, as the current

study relies mostly on the unitarity feature of the mixing matrix of charged leptons with

(massive) neutral ones, and not on their actual masses (see below), the exploration of

the neutrino mass spectrum is left out for future consideration.
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3.2 Interaction terms with the gauge bosons and

LFUV

As stated before, lepton flavor universality violation arises from the different couplings of

the lepton fields with the model’s gauge bososn. The interaction terms of the fermionic

and bosonic fields are derived from the covariant derivatives (3.25) acting on the various

fields. The kinetic part of the Lagrangian for the left-handed triplets is

L3
kin. =ψ̄LiγµDµψL

=ψ̄Liγµ
(
∂µ − igW a

µ T̂
a − igXXXµT̂

9
)
ψL,

(3.53)

where ψL ∈
{
QL

3 , l
L
n , l

L
4 , l

L
5

}
, (n = 2, 3). We denote with ψi3 the three entries of the triplet

ψL where i = 1, 2, 3 indicate the up-type, down-type and the third entries, respectively.

the kinetic part of the Lagrangian for the left-handed antitriplets is

L3̄
kin. =ψLiγµDµψ̄L

=ψLiγµ
(
∂µ + igW a

µ (T̂ a)T − igXXXµT̂
9
)
ψ̄L,

(3.54)

where ψ̄L ∈
{
QL
m, l

L
1

}
, (m = 1, 2). We denote with ψi3̄ the three entries of the anti-triplet

ψL where i = 1, 2, 3 indicate the up-type, down-type and the third entries, respectively.

As for the right-handed singlets, the kinetic part of the Lagrangian is

Lkin. =ψRiγµDµψ̄R

=ψ̄Riγµ
(
∂µ − igXXXµT̂

9
)
ψR,

(3.55)

The interaction terms of the various fermionic currents with the the four neutral Zµ,

Aµ, Z ′
µ and V 0

µ gauge bosons of the theory are shown in table (3.1), where the gauge

fields are given in Eqs. (3.32) and (3.34), and the relations between the two coupling

constants g and gX and the two mixing angles θ331 and θW are given in Eq. (3.36).

The interaction terms of the various fermionic currents with the two charged W±
µ
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Fermionic current Aµ × g
√

3 cos θ331 cos θW × Zµ ×
g

2 cos θW
× Z′

µ ×
g

2
√

3 cos2 θW sin θ331
× V 0

µ ×
g

√
2

×

ψ̄1
3γ

µψ1
3

[2
3

+X(3)

] [
1 − sin2 θW

(4
3

+ 2X(3)

)] [
−1 + sin2 θW

(4
3

+ 2X(3)

)]
0

ψ̄2
3γ

µψ2
3

[
−

1
3

+X(3)

] [
−1 + sin2 θW

(2
3

− 2X(3)

)] [
−1 + sin2 θW

(4
3

+ 2X(3)

)]
0

ψ̄3
3γ

µψ3
3

[
−

1
3

+X(3)

] [
sin2 θW

(2
3

− 2X(3)

)] [
2 − sin2 θW

(
−

8
3

− 2X(3)

)]
0

ψ̄1
3̄γ

µψ1
3̄

[
−

2
3

+X(3̄)

] [
−1 + sin2 θW

(4
3

− 2X(3̄)

)] [
1 − sin2 θW

(4
3

−
2
3
X(3̄)

)]
0

ψ̄2
3̄γ

µψ2
3̄

[1
3

+X(3̄)

] [
1 − sin2 θW

(2
3

+ 2X(3̄)

)] [
1 − sin2 θW

(4
3

−
2
3
X(3̄)

)]
0

ψ̄3
3̄γ

µψ3
3̄

[1
3

+X(3̄)

] [
− sin2 θW

(2
3

+ 2X(3̄)

)] [
−2 + sin2 θW

(8
3

+ 2X(3̄)

)]
0

ψ̄Rγ
µψR X −2 sin2 θWX 2X sin2 θW 0

ψ̄2
3γ

µψ3
3 0 0 0 1

ψ̄3
3̄γ

µψ2
3̄ 0 0 0 −1

Table 3.1: Couplings of the different fermionic fields with the neutral gauge bosons.

Fermionic current W±
µ ×

g√
2
× Y ±

µ ×
g√
2
×

ψ̄1
3γ

µψ2
3 1 0

ψ̄1
3γ

µψ3
3 0 1

ψ̄2
3̄γ

µψ3
3̄ 1 0

ψ̄3
3̄γ

µψ1
3̄ 0 1

Table 3.2: Couplings of the different fermionic fields with the charged gauge bosons.

and Y ±
µ gauge bosons of the theory are shown in table (3.2).

3.2.1 Gauge Bosons Contributions

In the folowing, and based on the global analyses stated in Section(2.1.1), our main

focus will be the vector/axial contributions which are assumed to be the larger ones in

both b −→ sll and b −→ lνl. These contributions can only come from the gauge bosons,

neutral and charged, of the theory. Hence, we provide, in what follows, the expressions

of the couplings of the charged and the neutral gauge bosons with the fermions, where

the flavor vectors are given in Eq. (3.18), expressed in the interaction eigenbasis.
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Neutral currents

The couplings of fermions to neutral gauge bosons Zµ, Aµ, Z ′
µ and V 0

µ (W 6,7
µ ) are given

by the interaction Lagrangian density expressed in the interaction eigenbasis

LN.C. = LZµ + LAµ + LZ′
µ

+ LV 0
µ
, (3.56)

where

LAµ =
√

3 cos θ331 cos θWgAµ

{2
3
ŪγµU − 1

3
D̄γµD − f̄γµf

}
, (3.57)

LV ±0
µ

= g√
2

{
V +0
µ

[
d̄L3 γ

µDL
3 − ŪL

mγ
µuLm − N̄L

1 γ
µνL1 + ē−L

n γµE−L
n + Ē−L

4 γµF−L
4 + N̄L

5 γ
µPL

5

]
+V −0

µ

[
D̄L

3 γ
µdL3 − ūLmγµUL

m − ν̄L1 γµNL
1 + Ē−L

n γµe−L
n + F̄−L

4 γµE−L
4 + P̄L

5 γ
µNL

5

]}
,

(3.58)

with V ±0
µ being a combination of the two neutral W 6

µ and W 7
µ as shown in Eq. (3.27).
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LZµ =g cos θWZµ


ŪLγ

µ



1 − cos2 θ331

2
0 0 0 0

0
1 − cos2 θ331

2
0 0 0

0 0
1 − cos2 θ331

2
0 0

0 0 0 −2 cos2 θ331 0

0 0 0 0 −2 cos2 θ331


UL

+ D̄Lγ
µ


−

1 + cos2 θ331

2
0 0 0

0 −
1 + cos2 θ331

2
0 0

0 0 −
1 + cos2 θ331

2
0

0 0 0 cos2 θ331

DL

+ f̄−
L γ

µ



−1 + 3 cos2 θ331

2
0 0 0 0 0 0

0
−1 + 3 cos2 θ331

2
0 0 0 0 0

0 0
−1 + 3 cos2 θ331

2
0 0 0 0

0 0 0 3 cos2 θ331 0 0 0

0 0 0 0 3 cos2 θ331 0 0

0 0 0 0 0
−1 + 3 cos2 θ331

2
0

0 0 0 0 0 0 3 cos2 θ331


f−

L

+ f̄−
R γ

µ



3 cos2 θ331 0 0 0 0 0 0

0 3 cos2 θ331 0 0 0 0 0

0 0 3 cos2 θ331 0 0 0 0

0 0 0 3 cos2 θ331 0 0 0

0 0 0 0 3 cos2 θ331 0 0

0 0 0 0 0
1 − 3 cos2 θ331

2
0

0 0 0 0 0 0 3 cos2 θ331


f−

R

+
(

1 + 3 cos2 θ331

2

)
N̄Lγ

µ



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 0


NL + cos2 θ331

(
−2ŪRγ

µUR + D̄Rγ
µDR

)


,

(3.59)
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and

LZ′
µ

=
cos θ331

gX
Z′

µ


ŪLγ

µ



9g2+g2
X

3
√

6
0 0 0 0

0 9g2+g2
X

3
√

6
0 0 0

0 0 −
√

3
2
g2 0 0

0 0 0 −18g2+g2
X

3
√

6
0

0 0 0 0 −18g2+g2
X

3
√

6


UL

+ D̄Lγ
µ


9g2+g2

X

3
√

6
0 0 0

0 9g2+g2
X

3
√

6
0 0

0 0 −
√

3
2
g2 0

0 0 0
√

6g2

DL

+ f̄−
L γ

µ



9g2−g2
X

3
√

6
0 0 0 0 0 0

0 −9g2−2g2
X

3
√

6
0 0 0 0 0

0 0 −9g2−2g2
X

3
√

6
0 0 0 0

0 0 0 18g2−2g2
X

3
√

6
0 0 0

0 0 0 0 18g2−2g2
X

3
√

6
0 0

0 0 0 0 0 −9g2−g2
X

3
√

6
0

0 0 0 0 0 0 18g2−2g2
X

3
√

6


f−

L

+ f̄−
R γ

µ



− g2
X√
6

0 0 0 0 0 0

0 − g2
X√
6

0 0 0 0 0

0 0 − g2
X√
6

0 0 0 0

0 0 0 − g2
X√
6

0 0 0

0 0 0 0 − g2
X√
6

0 0

0 0 0 0 0 −9g2+g2
X

3
√

6
0

0 0 0 0 0 0 − g2
X√
6


f−

R

+ N̄Lγ
µ



9g2−g2
X

3
√

6
0 0 0 0 0 0

0 − 9g2+2g2
X

3
√

6
0 0 0 0 0

0 0 − 9g2+2g2
X

3
√

6
0 0 0 0

0 0 0 −18g2−g2
X

3
√

6
0 0 0

0 0 0 0 − 9g2+2g2
X

3
√

6
0 0

0 0 0 0 0 −9g2+g2
X

3
√

6
0

0 0 0 0 0 0 18g2+g2
X

3
√

6


NL

+
g2

X

3
√

6

(
2ŪRγ

µUR − D̄Rγ
µDR

)}

,

(3.60)
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Charged currents

The couplings of fermions to both the SM and the non-SM charged gauge bosons W±
µ

and Y ±
µ respectively are given by the interaction Lagrangian density expressed in the

interaction eigenbasis

LC.C. = LW±
µ

+ LY ±
µ
, (3.61)

where

L
W ±

µ
=

g
√

2
W+

µ


ŪLγ

µ


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

DL + N̄Lγ
µ



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


f−

L + (f−R)cγµ



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


NL



+
g

√
2
W−

µ


D̄Lγ

µ


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

UL + f̄−
L γ

µ



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


NL + N̄Lγ

µ



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(f−R)c



,

(3.62)

and

L
Y ±

µ
=

g
√

2
Y +

µ


ŪLγ

µ


0 0 0 0

0 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

DL + N̄Lγ
µ



0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0


f−

L + (f−R)cγµ



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


NL



+
g

√
2
Y −

µ


D̄Lγ

µ


0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

UL + f̄−
L γ

µ



0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0


NL + N̄Lγ

µ



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0


(f−R)c



,

(3.63)
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3.2.2 Mixing matrices in the 331 model

When we move to the mass basis by rotating the fermion fields (Eq. (3.48)), flavor-

violating factors arise as in the SM. In fact, the two rotation matrices for the left-handed

quarks V (u),(d) and the two for the left-handed leptons U (l) and U (ν) will lead to the

appearance of mixing matrices in both the quark and the lepton sectors.

Mixing in the quark sector

From Eq. (3.62), the mixing matrix CKM for the 331 model is given by the W+
µ coupling

to the quarks

g√
2
W+
µ ŪLγ

µφDL = g√
2
W+
µ ŪLγ

µ



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0


DL, (3.64)

with the 5× 4 matrix V 331
CKM = V (u)†

φV (d)

V 331
CKM =



V
∗(u)

11 V
∗(u)

21 V
∗(u)

31 V
∗(u)

41 V
∗(u)

51

V
∗(u)

12 V
∗(u)

22 V
∗(u)

32 V
∗(u)

42 V
∗(u)

52

V
∗(u)

13 V
∗(u)

23 V
∗(u)

33 V
∗(u)

43 V
∗(u)

53

V
∗(u)

14 V
∗(u)

24 V
∗(u)

34 V
∗(u)

44 V
∗(u)

54

V
∗(u)

15 V
∗(u)

25 V
∗(u)

35 V
∗(u)

45 V
∗(u)

55





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0





V
(d)

11 V
(d)

12 V
(d)

13 V
(d)

14

V
(d)

21 V
(d)

22 V
(d)

23 V
(d)

24

V
(d)

31 V
(d)

32 V
(d)

33 V
(d)

34

V
(d)

41 V
(d)

42 V
(d)

43 V
(d)

44


,

(3.65)

whose elements can be written as

(
V 331

CKM

)
k,l

=
∑

n=1,2,3
V

∗(u)
nk V

(d)
nl , (3.66)

where n = 1, 2, 3 are the SM mass indices and k = 1, .., 5 and l = 1, .., 4 are quark flavor

indices. If we consider only the flavor subspace of the SM particles and remain at low
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energies, i.e. limit the number of indices to three for both the up and down-quarks, we

would recover the unitary VCKM matrix of the SM.

Mixing in the lepton sector

For the leptons, the PMNS matrix is generated by the coupling of W+
µ with the leptons.

From Eq. (3.62)

g√
2
W+
µ N̄Lγ

µξf−
L = g√

2
W+
µ N̄Lγ

µ



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



f−
L , (3.67)

where the flavor vectors f−
L and NL read

f−
L =

(
e−L

1 , e−L
2 , e−L

3 , E−L
4 , F−L

4 , E−L
2 , E−L

3

)T
,

NL =
(
νL1 , ν

L
2 , ν

L
3 , N

L
4 , N

L
5 , P

L
5 , N

L
1

)T
.

(3.68)

The 7× 7 U331
PMNS would be built by the combination U331

PMNS = U (ν)†
ξU (l)

U331
PMNS =



U
∗(ν)
11 U

∗(ν)
21 U

∗(ν)
31 . . . U

∗(ν)
71

U
∗(ν)
12 U

∗(ν)
22 U

∗(ν)
32 . . . U

∗(ν)
72

U
∗(ν)
13 U

∗(ν)
23 U

∗(ν)
33 . . . U

∗(ν)
73

... ... ... . . . ...

U
∗(ν)
17 U

∗(ν)
27 U

∗(ν)
37 . . . U

∗(ν)
77





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





U
(l)
11 U

(1)
12 U

(l)
13 . . . U

(1)
17

U
(l)
21 U

(l)
22 U

(l)
23 . . . U

(l)
27

U
(l)
31 U

(l)
32 U

(l)
33 . . . U

(l)
37

... ... ... . . . ...

U
(l)
71 U

(l)
72 U

(l)
73 . . . U

(l)
77


.

(3.69)
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Its elements would be expressed as

(
U331

PMNS

)
ij
≃
(
USM

PMNS

)
ij

+ U
∗(ν)
4i U

(l)
4j , (3.70)

where (
USM
PMNS

)
ij

=
∑

n=1,2,3
U

∗(ν)
ni U

(l)
nj . (3.71)

Here i, j are lepton generation indices. Yet, another term that contributes to the PMNS

matrix in the considered 331 model results from the identification we set for the fields in

order to have masses consistent with the observation. In fact, the identification of a left-

handed component of a triplet with the charge conjugate of a right-handed field made

this latter transform as a triplet under SU(3)L, which allows for a symmetry-conserving

interaction term as shown in Eq. (3.62)

(f−R)cγµ



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



NL. (3.72)

Thus, the elements of the (U331
PMNS) matrix, within our framework, read

(
U331

PMNS

)
ij

=
(
USM

PMNS

)
ij

+ U
∗(ν)
4i U

(l)
4j +W

∗(l)
5i U

(ν)
5j . (3.73)

The U331
PMNS could be developed for a non-minimal 331 model with β = 1/

√
3 by obtain-

ing bounds on the mixing angles in the leptonic sector studying LFV processes [130],

but given the current study, exploiting the unitarity of the rotation matrices U (ν) and

U (l) proves sufficient for the current study.
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3.2.3 The NP contribution and Wilson coefficients

As the theory at hand covers two widely seperated energy ranges, ΛSM and ΛNP, we

introduce a parameter ϵ defined as

ϵ = ΛEW

ΛNP
, (3.74)

to keep track of the energy order we are dealing with. Moreover, our analysis will be

focusing on the only non-SM contributions to the Wilson coefficients at the lowest order

in ϵ. i.e. the 3 × 3 SM block matrices. The Wilson coefficients of interest will be C(′)
9 ,

C(′)
10 and CVL

, which contribute to the (V − A) operators O(′)ij
9 , O(′)ij

10 and OijVL
defined

in Eqs. (2.16), (2.20) and (2.22), respectively. To track the mixing terms relevant for

our study at each order of energy, we perform the diagonalization of the mass matrices

(3.39), (3.40) and (3.46) order by order in ϵ. At each order, the following pattern for

the mixing matrices V , U and W is observed [131]

(i) At the order ϵ0, each of the mixing matrices consists in a 3× 3 unitary block that

mixes the SM particles among themselves. The elements of the matrices are of

the form V ∗
niVmj with n, m being SM mass indices and i, j are flavor indices.

(ii) The O(ϵ1) correction to the rotation matrices leads to an only mixing between

SM particles and exotic fields, but not SM fields alone or exotic fields alone. At

that order, the matrix elements take the form V ∗
niVmj with n, m being SM an NP

mass indices, respectively, and i, j are flavor indices.

(iii) At the order ϵ2, the contributions connect all the exotic particles. The elements

of mixing matrices read V ∗
niVmj with n, m being only NP mass indices, and i, j

are flavor indices.

Contributions to the b −→ s transition

The interactions of Z ′
µ, Zµ and Aµ with the right-handed quarks, as can be seen from

Eqs. (3.60), (3.59) and (3.57), respectively, are proportional to the identity in flavor
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space, so no flavor change can arise at any order in ϵ. As a result, neither contributes

to the Wilson coefficients C ′
9,10. Thus, only contributions to O9,10 are possible. As for

the heavy V 0
µ (W 6,7

µ ), we see from Eq. (3.58) and Tab. (3.1) that these gauge bosons

always couple an SM fermion to an exotic one in the interaction basis. Thus, when

moving to the mass basis, this only occurs at O(ϵ1).

Contribution from Zµ

The Lagrangian describing the interaction of Zµ with all the down-type quarks

and the leptons in the mass basis reads

LZµ ⊃ g cos θWZµ

{(
−1 + cos2 θ331

2
δkl + 1 + 3 cos2 θ331

2
V ∗

4kV4l

)
D̄k
Lγ

µDl
L

+

−1 + 3 cos2 θ331

2
δij + 1 + 3 cos2 θ331

2
∑

λ=4,5,6
U∗
λiUλj

 f̄ i−L γµf j−L

+
(

3 cos2 θ331δij + 1− 9 cos2 θ331

2
W ∗

6iW6j

)
f̄ i−R γµf j−R

}
. (3.75)

When the flavor changing transition b → s is mediated by the SM’s Zµ, we see

that the interaction arises at O(ϵ2), where a VCKM matrix element mixing the

fourth heavy state to a quark flavor state appears when we move to the mass

basis. The low-energy O(ϵ0) SM matrix is, however, diagonal in the flavor space

as is shown in Eq. (3.59).

Contribution from Z ′
µ

When we move to the mass eigenbasis, the Lagrangian describing the interaction

of Z ′
µ with all the down-type quarks and the leptons reads

LZ′
µ
⊃ cos θ331

gX
Z ′
µ

{(
9g2 + g2

X

3
√

6
δkl + −18g2 − g2

X

3
√

6
V ∗

3kV3l + 9g2 − g2
X

3
√

6
V ∗

4kV4l

)
D̄k
Lγ

µDl
L

+

−9g2 − 2g2
X

3
√

6
δij + 18g2 + g2

X

3
√

6
U∗

1iU1j + 9g2
√

6
∑

λ=4,5,6
U∗
λiUλj

 f̄ i−L γµf j−L

+
(
−g2

X√
6
δij + −9g2 + 4g2

X

3
√

6
W ∗

6iW6j+
)
f̄ i−R γµf j−R

}
,

(3.76)
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where all the fermion fields here are massive, k, l and i, j are flavor indices for

quarks and leptons, respectively. It is clear that the flavor changing transition

b→ s mediated by the heavy Z ′
µ arises already at low energy O(ϵ0) where the V

and W connect only SM fermions among themselves. In fact, as the restriction

of the interaction matrix in Eq. (3.60) to the SM particles is not proportional

to the identity in flavor space, a VCKM element V ∗
3kV3l appears in the Lagrangian

when we move to the mass basis, mixing the third SM mass and a quark flavor

eigenstates, with k = 1, .., 5 for the up-type and l = 1, .., 4 for the down-type

quarks.

Contributions to b −→ c transition

The flavor changing transition b −→ c is mediated by the two charged gauge bosons of

the theory: the SM’s (light) W+
µ and the (heavy) Y +

µ bosons.

Contribution from W+
µ

In the mass basis, the Lagrangian describing the interaction of W+
µ with the

massive fermions reads

LW+
µ

= g√
2
W+
µ

 ∑
n=1,2,3

V
∗(u)
nk V

(d)
nl (ūLk γµdLl ) +

∑
n=1,2,3

U
∗(ν)
ni U

(l)
nj (ν̄Li γµlLj )

+U∗(ν)
4i U

(l)
4j (N̄L

4 γ
µEL

4 ) +W
∗(l)
5i U

(ν)
5j ((E−R

4 )cγµNL
5 )
} , (3.77)

where n = 1, 2, 3 are SM mass indices, k, l and i, j are quark and lepton flavor

indices, respectively. It is clear that the charged quark flavor-changing transition

dl −→ uk occurs already at O(ϵ0) as a VCKM matrix element ∑n=1,2,3 V
∗(u)
nk V

(d)
nl

appears when we switch to the mass basis. Thus, no NP contribution arises at

this order. As for the leptons, the leading non-SM contribution arises at O(ϵ2),

where the lepton mixing matrices couple an exotic (heavy) mass and flavor eigen-

tates.
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Contribution from Y +
µ

The Lagrangian describing the interaction of Y +
µ with the massive fermions reads

LY +
µ

= g√
2
Y +
µ

{(
V

∗(u)
4k V

(d)
1l + V

∗(u)
5k V

(d)
2l + V

∗(u)
3k V

(d)
4l

)
(ūLk γµdLl )

+(U∗(ν)
4i U

(l)
1j + U

∗(ν)
2i U

(l)
4j + U

∗(ν)
3i U

(l)
5j + U

∗(ν)
5i U

(l)
7j )(ν̄Li γµlLj )

+W ∗(l)
6i U

(ν)
6j ((E−R

4 )cγµPL
5 )
} , (3.78)

For the heavy gauge boson, the flavor-changing quark transition does not occur

at O(ϵ0). It arises, however, at O(ϵ1), where Y +
µ always couples an SM particle

with an exotic one.

In what follows, we write the leading order effective Hamitonian for these flavor-

changing processes mediated by the model’s gauge bosons.

NP contribution to the C9 and C10 Wilson coefficients

For the flavor-changing neutral process b −→ s, the transition, mediated by the SM’s

gauge boson Zµ arises at O(ϵ2), and because there is no O(ϵ2) suppression due to the

gauge boson’s mass, the leading NP contribution for the Zµ is also at O(ϵ2). Thus,

we consider only O(ϵ0) SM terms of the lepton sector. The transition mediated by the

heavy Z ′
µ boson, on the other hand, starts at O(ϵ0), but due to the O(ϵ2) suppression

that results from the heavy mass of the Z ′
µ boson, we conclude that the NP contribution

from the Z ′
µ boson starts at O(ϵ2). Thus, as in the case of Zµ, we consider only O(ϵ0)

SM terms of the lepton sector. In the case of heavy neutral gauge boson V 0
µ (W 6,7

µ ), we

have seen that the b −→ s transitions arises at O(ϵ1). Moreover, since these processes

are mediated by the heavy gauge boson, an additionnal O(ϵ2) leads to an overall O(ϵ3)

suppression. As a result, the W 6,7
µ contribution can be neglected compared to Z ′

µ and

Zµ’s.
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We can thus rewrite equation (3.76) at the order of interest as

LZµ = g cos θWZµ

{(
1 + 3 cos2 θ331

2
V ∗

4kV4l

)(
d̄lLγ

µdkL
)

+1
2

(
−1 + 9 cos2 θ331

2
δij

)(
l̄iγµlj

)
+1

2

(
3 cos2 θ331 + 1

2
δij

)(
l̄iγµγ5l

j
)}

(3.79)

The (leading order)O(ϵ2) effective Hamiltonian for the flavor-changing neural transition

mediated by the Zµ reads13

HZµ

eff ⊃
cos2 θW (1 + 3 cos2 θ331)

8
g2

M2
Z

4π
α
V ∗

4kV4lδij
[(
−1 + 9 cos2 θ331

)
Oijkl9 +

(
1 + 3 cos2 θ331

)
Oijkl10

]
,

(3.80)

where α = e2/4π is the fine structure constant and the operators Oijkl9,10 are defined in

Eq. (2.16), corresponding to the (d̄kdl)(l̄ilj) flavor structure.

Following the above considerations, we eliminate the coupling g by means of Eq. (3.36).

Equation (3.76) can thus be rewritten as

LZ′
µ

= cos θ331

gX
Z ′
µ

{(
− g2

X

3
√

6 cos2 θ331
V ∗

3kV3l

)(
d̄lLγ

µdkL
)

+1
2

(
− g2

X

3
√

6 cos2 θ331

)(
1 + 9 cos2 θ331

2
δij − U∗

1iU
∗
1j

)(
l̄iγµlj

)
+1

2

(
− g2

X

3
√

6 cos2 θ331

)(
−1 + 3 cos2 θ331

2
δij + U∗

1iU
∗
1j

)(
l̄iγµγ5l

j
)}

(3.81)

13V ∗
(3,4)kV(3,4)l ≡ V

(d)∗
(3,4)kV

(d)
(3,4)l with (d) stands for a down-type quark, and U∗

1iU1j ≡ U
(l)∗
1i U

(l)
1j with

the superscript (l) stands for a charged lepton.
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The leading-order O(ϵ2) effective Hamiltonian for the FCNC transition mediated by

the Z ′
µ in terms of the effective operators is then

HZ′
µ

eff ⊃
g2
X

108 cos2 θ331

1
M2

Z′
µ

V ∗
3kV3l

4π
α

{[(
1 + 9 cos2 θ331

2

)
δij − U∗

1iU1j

]
Oijkl9

+
[(

3 cos2 θ331 − 1
2

)
δij + U∗

1iU1j

]
Oijkl10

}
.

(3.82)

By matching HZ′
µ

eff and HZµ

eff onto Eq. (2.19), the NP contributions to the Wilson coef-

ficients can be written in terms of the quantities fZ′ and fZ as

Cij9 = fZ′

(
−λij + 1 + 3 tan2 θW

2
δij

)
+ fZ

(
−1 + 3 tan2 θW

)
δij, (3.83)

and

Cij10 = fZ′

(
λij + tan2 θW − 1

2
δij

)
+ fZ

(
1 + tan2 θW

)
δij, (3.84)

where

fZ′ = − 1
2
√

2GFVtbV ∗
ts

4π
α

1
6− 2 tan2 θW

g2

M2
Z′
V ∗

3kV3l, (3.85)

and

fZ = − 1
2
√

2GFVtbV ∗
ts

4π
α

1
8
g2

M2
Z

V ∗
4kV4l, (3.86)

with λij = U∗
1iU1j. Here we have eliminated cos θ331 and the coupling gX by means of

Eq. (3.36). Despite the fact that our model allows for lepton flavor violating transitions

with different leptons in the final state (i ̸= j), these processes have not been observed

yet, so, assuming that they are suppressed, we set their coefficients to zero. The solution

fZ′ = 0, i.e. the NP contribution is zero, should be discarded as it would mean the

absence of LFUV. We are left, thus, with λij = 0 for i ̸= j. By definition

λij = 0 =⇒ U∗
1iU1j = 0. (3.87)
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Equation (3.87) does not necessarily imply that both U matrix elements have to be

zero; one rotation matrix entry can be non-zero for a generation i (e.g. i = 1) while the

other two entries (e.g. j = 2, 3) are zero and yet ensuring the above annihilation. We

denote with I the generation for which the entry for the rotation matrix is non-zero,

and with i the other generations. We get

CI9 = fZ′

(
−λI + 1 + 3 tan2 θW

2

)
+ fZ

(
−1 + 3 tan2 θW

)
,

CI10 = fZ′

(
λI + tan2 θW − 1

2

)
+ fZ

(
1 + tan2 θW

)
,

(3.88)

and
Ci9 = fZ′

(
1 + 3 tan2 θW

2

)
+ fZ

(
−1 + 3 tan2 θW

)
,

Ci10 = fZ′

(
tan2 θW − 1

2

)
+ fZ

(
1 + tan2 θW

)
.

(3.89)

Inverting relations (3.89) we get

fZ′ = 1 + tan2 θW

4 tan2 θW
Ci9 −

−1 + 3 tan2 θW

4 tan2 θW
Ci10. (3.90)

From the system of equations (3.89) and (3.88) we get

2λIfZ′ = CI10 − CI9 − Ci10 + Ci9. (3.91)

We now have to identify which index corresponds to which lepton, knowing that based

on phenomenological constraints, the electronic NP contribution to the effective Hamil-

tonian Ce
9,10 is absent.

(i) If we identify the electron with the index i (for which the entry for the rotation

matrix vanishes), we set Ci9,10 = 0. Equation (3.90) implies that fZ′ = 0, solution

that has to be discarded since it would mean no LFUV.

(ii) If the electron is identified with the index I, the coefficients CI9,10 must be set to

zero and the remaining index i would correspond to the other two generations.
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In this case, Eqs. (3.91) and (3.90) yield constraints on the non-vanishing NP

Wilson coefficients for µ and τ

Cµ9
Cµ10

= 2 tan2 θW + λe (1− 3 tan2 θW)
2 tan2 θW − λe (1 + tan2 θW)

. (3.92)

Due to the unitarity of the 7× 7 rotation matrix U , we have

λI =| U1I |2= 1−
7∑

(i ̸=I)i=1
| U1i |2, (3.93)

which means that 0 < λe ≤ 1. Imposing that | Cµ10 |≤| C
µ
9 |, the one-dimensional

scenario of the global analysis that favors NP in Cµ9 = −Cµ10 within the 1σ interval

[−0.75,−0.49] [86] is explained for 0.71 ≤ λe ≤ 0.86 (θW ≃ 29◦), where the best-fit

point presented in Tab. (2.1) corresponds to λe ≡ |U1e|2 = 0.68. The exact equality

Cµ9 /C
µ
10 = −1, obtained for λe = 1, which means that the left-handed interaction of the

electron is a mass eigenstate, is also allowed for this case. It is worth mentioning that

in case A of the set with β = −1/
√

3 [131], the allowed region to the Wilson coefficients

imposing that | Cµ9 |≤| C
µ
10 | is explained for 0.81 ≤ λLe ≤ 1, which agrees with our set,

provided that | Cµ10 | is supposed to be less than | Cµ9 | (Cµ10 = −Cµ9 ), only for λe = 1.

The case B in Ref. [131], however, is not taken into account within our model since

the right-handed components are not concerned with the modification applied to the

fields. The other two scenarios (NP in Cµ9,10 = −C ′µ
9,10 and NP in Cµ9 [86]) cannot be

described in the framework of our model. In fact, since no FCNC arises for right-handed

quarks due to their diagonal interaction terms in flavor space (Eqs. (3.59) and (3.60)),

C ′µ
9,10 = 0. Figure (3.1) shows the allowed region for the Wilson coefficients as indicated

by the gray wedge imposing Cµ9 /C
µ
10 to remain between −1 and −2.04. The light grey

wedge are the results obtained for 0.71 ≤ λe ≤ 1. The dark gray wedge represents the

the one-dimensional scenario of the global analysis that favors NP in Cµ9 = −Cµ10 within

the 1σ interval [−0.75,−0.49].

In summary, the electron (first generation of SM leptons) has to be identified with
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Figure 3.1: Allowed regions for the Wilson coefficients for β = 1/
√

3 imposing that
| Cµ10 |≤| C

µ
9 |. The dark gray wedge shows the favored one-dimensional NP scenario in

Cµ9 = −Cµ10.

the non-vanishing entry in the rotation matrix U in order to have non-vanishing NP

contributions to Wilson coefficients, for both µ and τ that agree with the favored one-

dimensional scenario of NP in Cµ9 = −Cµ10.

NP contribution to the CVL
Wilson coefficient

When considering only contributions at the lowest order in ϵ, we have seen that the

b → c transition mediated by the SM gauge boson W±
µ occurs at O(ϵ0) whereas the

leading order non-SM contribution for leptons arises at O(ϵ2). We conclude that the

leading order effective Hamiltonian describing b −→ c process mediated by W±
µ is O(ϵ2).

For the heavy gauge boson, on the other hand, the flavor-changing quark transition

arises at O(ϵ1). In addition to that, the Hamiltonian contains a O(ϵ2) suppression

(compared to the SM) that comes from the heavy mass of the gauge boson in the

propagator. Therefore, the Y +
µ contribution starts at an already high overall O(ϵ3)

order which can be neglected compared to the O(ϵ2) contribution from the W+
µ gauge

boson regardless of what the order of the leading contribution of the leptons might

be. The (leading order) O(ϵ2) effective Hamiltonian for the flavor changing charged
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transition mediated by the W+
µ is thus

HW+
µ

eff = g2

2M2
W

∑
n=1,2,3

(V ∗(u)
nk V

(d)
nl )

 ∑
n=1,2,3

(U∗(ν)
ni U

(l)
nj ) + U

∗(ν)
4i U

(l)
4j + U

∗(ν)
5i W

(l)
5j

 (ūLk γµdLl )(ν̄Li γµlLj ),

(3.94)

where n = 1, 2, 3 are SM mass indices, k, l and i, j are quark and lepton flavor indices,

respectively. For the charged transition of interest (k = 3 and l = 2), ∑n=1,2,3(V
∗(u)
nk V

(d)
nl )

is nothing but the VCKM element Vcb (Eq. (3.66)) and ∑n=1,2,3(U
∗(ν)
ni U

(l)
nj ) is the element

(UPMNS)SM
ij (Eq.(3.71)). Thus, exploiting the unitarity of the SM’s UPMNS matrix at the

order of interest for i = j

HW+

eff = g2

2M2
W

Vcb
[
1 + U

∗(ν)
4i U

(l)
4i + U

∗(ν)
5i W

(l)
5i

]
(c̄LγµbL)(ν̄LγµlL). (3.95)

Comparing to equation (2.23), the model’s contribution to the operator OiiVL
is thus

CVL
= U

∗(ν)
4i U

(l)
4i + U

∗(ν)
5i W

(l)
5i . (3.96)

Both 7 × 7 rotation matrices U (ν) and U (l) are unitary, and so is their product, so we

can write for a specific SM generation I

U
∗(ν)
4I U

(l)
4I = 1−

7∑
(J ̸=I)J=1

U
∗(ν)
4J U

(l)
4J . (3.97)

The same can be said about the product 7 × 7 of the two unitary matrices U (ν) and

W (l)

U
∗(ν)
5I W

(l)
5I = 1−

7∑
(J ̸=I)J=1

U
∗(ν)
5J W

(l)
5J . (3.98)

J represents all the remaining generations. We denote with ΛI = U
∗(ν)
4I U

(l)
4I and ∆I =

U
∗(ν)
5I W

(l)
5I . Equations (3.97) and (3.98) mean that ΛI and ∆I should belong each to

[0, 1[, so ΛI + ∆I should also remain within the interval [0, 1[ in order for the term

to account as a contribution which agrees with the allowed 1σ range for the effective
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coefficient CVL
(Eq. (2.24)) for ΛI + ∆I ∈ [0.09, 0.13]. Thus, our model provides a

good explanation of the NP contribution to the b→ clν̄l transitions provided that the

dominant contributions come from the gauge bosons rather than the Higgs sector [132].
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Indications of LFUV in the rare flavor-changing processes B −→ K(∗)l+l− and B −→

D(∗)lν̄l that have been reported by the experimental collaborations of LHCb, Belle and

BaBar, have triggered a large interest in possible NP interpretations since the univer-

sality of the weak interactions is one of the key predictions of the SM. The fact that

the deviations from the SM expectations had been observed only in the decay of the B

mesons, a speculation about a possible NP that couples mainly to the third generation

of quarks and leptons would be the way to go. In fact, whether the investigation is car-

ried out through the decay of electroweak gauge bosons, the leptonic and semileptonic

decays of mesons with light quarks, or the decay of quarkonia, no deviation had been

observed in the different probes performed to test this property.

Within a model-independent approach, such deviations can be computed theoretically

separating short- and long-distance contributions using an effective Hamiltonian. As-

suming that NP originates at a scale ΛNP ∼ O(TeV) to solve the hierarchy prob-

lem, its contributions are encoded in short-distance Wilson coefficients that factor the

dimension-six semi-leptonic operators that dominate the transitions. At the low energy

scale µ ∼ mb, the derivation of the Wilson coefficients proceeds through two steps. The

first step consists of determining them at the high scale µ ∼ MW,t through matching

the full SM result (observable) onto the effective one and thus determining the initial

conditions, while the second consists of running the Wilson coefficients down to the low-

energy scale by calculating the anomalous dimension matrix needed for the solution of

the regularization group equation (RGE). The global analyses for the neutral current
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(NC) anomaly R
µ/e

K(∗) agree in favor of a large shift in the two Wilson coefficients Cµ(′)
9

and Cµ(′)
10 , either separately or in pairs, which factor the operators

(
s̄L(R)γµbL(R)

)
(µ̄γµµ)

and
(
s̄L(R)γµbL(R)

)
(µ̄γµγ5µ), respectively, with an absence of NP contribution to any

electronic Wilson coefficient. While the charged current (CC) anomaly R
τ/l

D(∗) , is de-

scribed by a shift in the Wilson coefficient CV L that factors the dimension-six operator

(c̄LγµbL) (τ̄ γµντ ).

In order to provide a simultaneous dynamical explanation for these deviations, a sce-

nario that embeds a Z ′ model, widely used in the literature, is proposed. Based on the

gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)X , 331 models is a BSM theory from which the

SM gets recovered at low energies as the models’ gauge symmetry gets broken down

spontaneously at a high energy scale, and then eventually to U(1)em at the electroweak

scale. As the minimal versions of these models do not generate LFUV since they have

to obey gauge-anomaly cancellation, a non-minimal 331 model is adopted. In fact,

from the requirement that the lepton generations should not be embedded equally into

SU(3)L representation in order for LFUV to arise from different couplings between

the leptons and the gauge bosons, two additional lepton triplets had to be introduced.

Moreover, in order to accommodate the experimental observations, one of the fermion

fields had to be identified with the charge conjugate of the right handed component of

another generation, which not only helps reducing the number of the additional degrees

of freedom, but also prevents the existence of unwanted non-SM light particles in the

final spectrum. Choosing the specific value for the parameter β = 1/
√

3 to ensure non-

exotic charges for both SM and new fields in the spectra, we investigated the ability of

this model to reproduce the deviations observed in both FCCC and FCNC transitions

assuming that these latter are dominated by the model’s charged and neutral gauge

bosons, respectively. In other words, we worked out how this model could accommo-

date the favored solutions of the global analyses performed within a model-independent

approach.

In the case of the neutral transition b −→ sl+l−, the adopted model turned out to

accommodate significant NP contribution to the two Wilson coefficients Cµ9 (positive)
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and Cµ10 (negative) in agreement with NP scenarios favored by global fits with the as-

sumption of the absence of the electronic contribution in b −→ se+e− as it has not been

observed. Furthermore, a prediction for the values of both Wilson coefficients C9 and

C10 for b −→ sτ+τ− could be made from the electronic and muonic ones. The model,

however, does not account for any contribution to the Wilson coefficients C ′
9,10 as it

has no LFUV right-handed currents. Moreover, lepton flavor transition might arise

in our model, which is a frequent feature of models generating LFUV couplings [133].

However, the non-observation of lepton flavor violation (LFV) b −→ slilj allowed us to

set constraints on the mixing matrices between the mass and the interaction fermion

eigenstates. Even though not (yet) observed, a prediction concerning b −→ sν̄ν transi-

tion Wilson coefficients could be made in our framework which would arise at the same

order in ϵ as other FCNC b −→ sl+l transitions.

In the case of the hints of LFUV observed in charged transitions b −→ clνl, namely

RD(∗) , once again, the non-observation of lepton flavor violation (LFV) b −→ clν̄ ′ al-

lowed us to set constraints on the mixing matrices between the mass and the interaction

fermion eigenstates. The model thus proved able to explain the dominance of the vec-

tor/axial exchange which is favored by global fits. Moreover, the analysis showed that

the observed deviations in b −→ c transitions could be explained by the exchange of

the SM’s W+
µ but not the heavy Y +

µ as this latter couples with the fermions at a high

order in ϵ (O(ϵ2)) and is suppressed furthermore by the heavy mass of the heavy me-

diator. It turns out that since in the mass basis, the light W±
µ bosons have diagonal

couplings in the SM subspace, at the energy range of interest, LFUV appears only due

to mixing effects in the lepton sector which result from the masses of the neutrinos.

More precisely, the leading order contribution stems from the PMNS matrix element

that mixes a lepton with a massive neutrino without which, such contributing term

would not appear.

Even though, for the problem at hand, exploiting the unitarity of the rotation matrices

U (ν) and U (l) has proved sufficient in explaining the B-anomalies observed in the charged

current transitions, exploring the neutrino mass spectrum is of paramount importance
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and requires an accurate analysis within our framework that should be considered in

future work.
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Appendix A

OPE and short-distance QCD

effects

The effective Hamitonian, including QCD effects, is generalized to

Heff = GF√
2
∑
n

V n
CKM Cn(µ)On(µ), (A.1)

where V n
CKM denotes the CKM structure of the operator On. The amplitude for the

decay of a meson M = K,D,B, ... to a final state F is obtained by the projection of

the Hamilton operator onto the external states

iAeff(M → F ) = ⟨F |Heff |M⟩

= GF√
2
∑
n

V n
CKM Cn(µ) ⟨F |On(µ)|M⟩ ,

(A.2)

For definiteness, we consider the non-leptonic quark-level decay c −→ sud̄. The tree-

level W -exchange amplitude for this decay (without QCD effects) is

iA(0)
eff (c −→ sud̄) = GF√

2
V ∗
csVud [C2(MW ) ⟨O2⟩T ] , (A.3)
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where C2(MW ) = 1 and ⟨O2⟩T is the tree-level matrix element of O2 with

O2 = (s̄αLγµcαL)
(
ūβLγµc

β
L

)
. (A.4)

Taking into account QCD corrections, the (generalized) effective Hamitonian con-

structed to reproduce the amplitude A in the full theory reads

H1−loop
eff (c −→ sud̄) = GF√

2
V ∗
csVud [C1O1 + C2O2] , (A.5)

with

O1 =
(
s̄αLγ

µcβL
) (
ūβLγµc

α
L

)
. (A.6)

Here α and β are color indices and O1 is a newly generated operator that has the same

flavor form of O2 but different color structure. The Wilson coefficients Cn are obtained

by matching the full theory onto the effective one by requiring

Aeff(c −→ sud̄) = Afull(c −→ sud̄), (A.7)

where

iAeff(c −→ sud̄) = GF√
2
V ∗
csVud [C1(µ) ⟨O1⟩+ C2(µ) ⟨O2⟩] (A.8)

with µ being a renormalization scale. The full amplitude for the c −→ sud̄ decay is

obtained by evaluating the diagrams (a)-(c) in Fig. (A.1). To O(αs), it is found to

be [70] (taking m2
q ≪ p2 .M2

W )

iA1−loop
full = iA1−loop

(a) + iA1−loop
(b) + iA1−loop

(c)

= GF√
2
V ∗
csVud

[
−3αs

4π
ln M

2
W

−p2 ⟨O1⟩T +
(

1 + 3
N

αs
4π

ln M
2
W

−p2

)
⟨O2⟩T

]
,

(A.9)
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c s

d u

W

g

(a)

c s

d u

Wg

(b)

c s

d u

W

g

(c)

⊗

c s

d u

g

(d)

⊗

c s

d u

g

(e)

⊗

c s

d u

g

(f)

Figure A.1: One loop current-current diagrams for the non-leptonic weak decay c −→
sud̄ in the full theory: (a), (b) and (c), and in the effective theory (d), (e) and (f).

where the tree-level matrix elements of both operators O1 and O2 are

⟨O1⟩T = ⟨F |O1|M⟩T ,

⟨O2⟩T = ⟨F |O2|M⟩T .
(A.10)

αs = g2
s/4π where gs is the QCD coupling, N being the number of colors and p is the

off-shell momentum carried by all the massless external quark lines, which is taken to

be not too far from MW . In the limit µ→ p, the matching procedure yields


C1(µ) = 0− 3αs

4π
ln M

2
W

µ2

C2(µ) = 1 + 3
N

αs
4π

ln M
2
W

µ2

. (A.11)

Thus, the whole calculation reduces to an effective tree-level calculation with effective

couplings that have to be deduced by comparing both theories.

To the same order in αs, the resulting expressions for the current-current matrix ele-

ments ⟨On⟩ are found to remain divergent, even after quark field renormalization [70].

Consequently, an operator renormalization is required. The renormalization amounts
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to inserting the Wilson coefficients Cn(µ) in the vertex for the one loop current-current

diagrams (d), (e) and (f) in computing the effective amplitude. This would provide

a factorization of both contributions: the short-distance (Wilson coefficients) and the

long-distance (operator matrix elements), which constitutes the most important feature

of the OPE. Hereby, the factorization amounts to splitting the logarithm according to

ln M
2
W

−p2 = ln M
2
W

µ2 + ln µ2

−p2 , (A.12)

which means that the scale µ which was the infra-red (IR) cut-off in the full theory

becomes the ultra-violet (UV) cut-off in the effective one. As a consequence, the one-

loop effective amplitude reads

iAeff = GF√
2
V ∗
csVud

{
C1(µ)

[(
1 + 3

N

αs
4π

ln µ2

−p2

)
⟨O1⟩T +

(
−3αs

4π
ln µ2

−p2

)
⟨O2⟩T

]

+C2(µ)
[(
−3αs

4π
ln µ2

−p2

)
⟨O1⟩T +

(
1 + 3

N

αs
4π

ln µ2

−p2

)
⟨O2⟩T

]}
,

(A.13)

from which we read off the operator renormalization matrix

Znm = 1 + αs
4π

3/N −3

−3 3/N

 . (A.14)

which exhibits how the operators mix under renormalization. In fact, the matrix struc-

ture of the renormalization "constant" shows that the Wilson coefficient Cn can generate

the structure of On at both the tree and the one-loop levels, while C1(2) can generate

the structure of O2(1) at the one-loop level. The operators are then generated with the

anomalous dimension matrix defined in Eq. (2.9). By demanding the independence of

the amplitude of µ, we find the RGE of the Cn (2.10) which describes the evolution of

the Wilson coefficients from O(100 GeV) down to O(1 GeV) energy range.
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Appendix B

Bounds on the scale of NP

Bounds on the scale of new physics can be obtained from precise experimental infor-

mation which, in all cases, requires that the size of the NP amplitude cannot exceed

that of the SM short-distance contribution.

B.1 From ∆F = 1 processes

Some of the most stringent constraints on NP models are placed by the process b −→ sγ

from the computation of its Feynman graph

b s
W

u, c, t
γ(q, ε)

Figure B.1: Feynman dia-
gram for b −→ sγ.

A ∼ eFµν s̄σ
µν
(1 + γ5

2

)
b
mb

M2
W

g2

16π2V
∗
tsVtbF

(
m2
t

M2
W

)
,

(B.1)

where g2/16π2 is the obvious loop-factor, e is the photon coupling constant, and

mb is the mass of the b quark which appears due to flipping its chirality. The term

V ∗
tsVtbF (m2

t/M
2
W ) contains the suppression factor V ∗

tsVtb which translates into the dom-
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ination of the running of the top quark in the loop (GIM mechanism), and a function

F (m2
t/M

2
W ) which is expected to be of order 1 [94].

The NP contribution to this process can be modeled by adding a six-dimension1 oper-

ator to the Lagrangian

δL = C
Λ2 eFµν q̄Lσ

µνbR H = C
Λ2

v√
2
eFµν s̄Lσ

µνbR, (B.2)

where the coefficient of the operator C is of order 1. When this term’s contribution to

the amplitude is compared to the SM’s, and is required to be less than 10%, we get

roughly the bound

ANP
∆F=1
ASM

∆F=1
∼

C
Λ2

v√
2

mb

M2
W

g2

16π2VtbV
∗
ts

. 0.1 → Λ & 70 TeV, (B.3)

which is clearly higher than any existing (or planned) particle accelerator facility! This

bound could be softened if we take C ≪ 1 and consider non-generic NP flavor structure.

However, to avoid the flavor problem, the effective couplings should be of order 1 in

order to maintain the same flavor structure as the that of the SM. The question of

what (factor) would make this coefficient smaller in order to bring the NP scale down to

experimental reach while maintaining the SM’s generic flavor structure is the motivation

behind the MFV principle.

B.2 From ∆F = 2 processes

Within the SM, the amplitudes of the mixing of Bd (and Bs and K0) with its anti-

particle2, denoted ∆F = 2 amplitudes, are generated by box-diagrams of the type in

Fig. (B.2). The SM short-distance contribution to the amplitude is highly suppressed

1[L] = E+4, the field strength [Fµν ] = E+2, the fermionic fields [Ψ] = E3/2 and the scalar field
[H] = E+1.

2Bd = db̄, Bs = sb̄ and K0 = ds̄.
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d b

db

u, c, t

u, c, t

W W

d b

db

W

W

u, c, t u, c, t

Figure B.2: Box diagrams contributing to Bd-B̄d mixing.

by both the GIM mechanism (top quark running in the loop) and the hierarchical

structure of the CKM matrix elements

ASM
∆F=2 = G2

Fm
2
t

16π2 (V ∗
tiVtj)

2
〈
M̄
∣∣∣∣(Q̄i

Lγ
µQj

L

)2
∣∣∣∣M〉

× F
(
m2
t

M2
W

)
, (B.4)

where i, j are flavor indices of the meson valence quarks, M = K0, Bd, Bs and F is a

loop function of O(1). The NP contribution at the tree-level to the meson-antimeson

mixing amplitude is modeled by the effective Lagrangian

LNP =
∑
i ̸=j

Cij

Λ2
NP

(
Q̄i
Lγ

µQj
L

)2
, (B.5)

where Cij are dimensionless couplings of the dimension-six operators. The M − M̄

mixing amplitude is thus

A∆F=2 = ASM
∆F=2 +ANP

∆F=2

=
[
y2
t (V ∗

tiVtj)
2

16π2v2 + Cij

Λ2
NP

] 〈
M̄
∣∣∣∣(Q̄i

Lγ
µQj

L

)2
∣∣∣∣M〉

=MSM
∆F=2

1 + Cij

y2
t λ

2
t

(
ΛSM

ΛNP

)2
 ,

(B.6)

where GF/
√

2 = 8g2/M2
W , MW = gv/2, mt = ytv/

√
2 and λt = V ∗

tiVtj. ΛSM is the

effective scale of the SM: ΛSM = 4πv ≈ 3 TeV.
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From the experimental requirement |MNP
∆F=2| < |MSM

∆F=2| we get

ΛNP >
3 TeV
λt/
√
Cij
∼


103 TeV×

√
Csd from K0 − K̄0,

102 TeV×
√
Cbd from Bd − B̄d,

101 TeV×
√
Cbs from Bs − B̄s.

(B.7)

A more detailed list of the bounds derived from ∆F = 2 is reported in [91] where are

quoted the bounds for sets of dimension-six operators that are present in the SM, and

others which arise in specific SM extensions. As a result, NP models at the TeV scale

with a generic flavor structure Cij = O(1) are ruled out, otherwise, physics beyond the

SM would have to be highly non generic! This (flavor) problem can be remedied with

the introduction of the MFV.
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Partial decay rate for B −→ Dτν̄τ

The double differential decay rate of B −→ Dτν̄τ can be written as [134]

dΓ
dq2d cos θ

= G2
F

(2π)3 |Vcb|
2 1
16m2

B

|−→p |
(

1− m2
l

q2

)
LµνH

µν , (C.1)

where Lµν and Hµν are the leptonic and hadronic current tensors, θ is the angle be-

tween D and l three-momenta in (l − ν̄τ ) rest frame, −→p is the three-momentum of

D
(
|−→p | = λ1/2 (m2

B,m
2
M , q

2) with function λ (a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca
)

and q2 is the momentum transfer squared bounded at m2
l 6 q2 6 (mB −mD)2.

C.1 Kinematics

In the rest frame of the B meson withD moving in the positive z-direction, the momenta

of B , D and the virtual W ∗ can be written, respectively, as

pµB = (mB, 0, 0, 0) , pµD = (ED, 0, 0, |−→p |) , qµ = (q0, 0, 0,−|−→p |) . (C.2)
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Three of the four polarization vectors of W ∗ are conveniently chosen to be orthogonal

to its momentum. They are given by [135]

εµ(λW = 0) = 1√
q2 (|−→p |, 0, 0,−q0) , εµ(λW = t) = 1√

q2 (q0, 0, 0, |−→p |) ,

ε(λW = ±) = 1√
2

(0,±1,−i, 0) ,
(C.3)

where q0 is the energy of the W ∗ in the B rest frame. It reads

q0 = mB − ED = m2
B −m2

D + q2

2mB

. (C.4)

In the (l − ν̄τ ) center-of-mass frame, the four-momenta of the leptons are given by

pµl = (El, |−→p l| sin θ, 0, |−→p l| cos θ) , pµνl
= (|−→p l|,−|−→p l| sin θ, 0,−|−→p l| cos θ) , (C.5)

where El = (q2 +m2
l ) /2
√
q2 and |−→p l| = (q2 −m2

l ) /2
√
q2 are the energy and the mag-

nitude of the three-momentum of the charged lepton, respectively. In this frame, the

polarization vectors of the virtual W take the form [136]

εµ(λW = 0) = (0, 0, 0, 1) , εµ(λW = t) = (1, 0, 0, 0) , ε(λW = ±) = 1√
2

(0,∓1,−i, 0) .

(C.6)

C.2 Helicity amplitudes

The lepton-hadron correlation function is defined by the contraction of the two current

tensors Lµν and Hµν . It can be written as [134]

LµνH
µν = Lµ

′ν′
gµ′µgν′νH

µν

=
∑

m,m′,n,n′

(
Lµ

′ν′
εµ′(m)ε∗

ν′(n)
) (
Hµνε∗

µ(m′)εν(n′)
)
gmm′gnn′

(C.7)
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where we have used the completeness relation for the polarization four-vectors

∑
m,m′=0,t,±

εµ(m)ε∗
ν(m′)gmm′ = gµν . (C.8)

Each of the two factors in Eq. (C.7) are Lorentz-invariant. They can thus be evaluated

in different Lorentz frames. The hadronic part will be evalutaed in the B rest frame,

whereas the leptonic part will be evaluated in the l − ν̄l center-of-mass frame (W ∗

rest frame). The lepton-hadron correlation function can be written very compactly by

expanding the leptonic tensor in terms of a set of Wigner’s dJ -function as [134,137]

LµνH
µν =1

8
∑

λl,λ,λW ,λ′
W ,J,J ′

(−1)J+J ′ |hlλl,λν̄l
|2δλ−λW ,λ−λ′

W
×

dJλW ,λl−λν̄l
(θ) dJ ′

λ′
W ,λl−λν̄l

(θ) HλλW
H∗
λλW

,

(C.9)

where

• J and J ′ run over 1 and 0, λν̄l
= 1

2
and λW = 0(J = 0),±, 0(J = 1), whereas, in

the rest frame of W ∗ (−→q = −→0 ), the time component transforms as J = 0.

• HλλW
≡ Hµ(λ)εµ(λW ) is the hadronic helicity amplitude which describes, for

the B −→ Dlν̄l transition, the decay of a pseudo-scalar meson (helicity λ = 0)

into another pseudo-scalar meson and the four helicity states of the leptonic pair

(Woff−shell).

• |hlλl,λν̄l
|2 are the moduli squared of the helicity amplitudes evaluated in the (l−νl)

c.m frame (where the polarization four vectors are given by Eq. (C.6). They are

obtained to be [134,136,137]

|hl−1/2,1/2|2 = 8
(
q2 −m2

l

)
, for the non− flip transition

|hl1/2,1/2|2 = 8m
2
l

2q2

(
q2 −m2

l

)
, for the flip transition

(C.10)
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Using the standard convention for Wigner’s dJ -functions [16]

dJmm′(θ) =
√

(J +m′)! (J −m′)! (J +m)! (J −m)!

×
∑
s

 (−1)m′−m+s

s! (J +m− s)! (m′ −m+ s)! (J −m′ − s)!

(
cos θ

2

)2J+m−m′−2s (
sin θ

2

)m′−m+2s
 ,

(C.11)

with dJm′m(θ) = (−1)m−m′
dJmm′(θ). Summing over λl for both the flip and the non-flip

transitions and integrating over cos θ we obtain the differential decay rate expression

dΓ
dq2 = G2

F

192π3 |Vcb|
2 |
−→p |
m2
B

(
1− m2

l

q2

)2

q2

×
{(

1 + 2m2
l

q2

)
|H00|2 + 3m2

l

4q2 |H0t|2 +
(

2 + m2
l

2q2

) [
|H0−|2 + |H0+|2

]}
.

(C.12)

The non-vanishing hadronic helicity amplitudes (which survive the contractions qµεµ(λW ),

pµBεµ(λW ) and pµDεµ(λW )) are [138]

H00 = 1√
q2FV (q2)2mB|−→p | and H0t = 1√

q2FS(q2)
(
m2
B −m2

D

)
, (C.13)

where FV and FS are the QCD form factors that parametrize the matrix element

⟨D(pD)|c̄γµb|B(pB)⟩ = FV (q2)
[
pµB + pµD −

m2
B −m2

D

q2 qµ
]
+FS(q2)m

2
B −m2

D

q2 qµ. (C.14)

The remaining q2-integration has to be done numerically due to the q2-dependance of

the form factors.
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ملخص

مع 331 النموذج على تعتمد دراسة أجريت ،B الميزون اضمحلال في الملاحظة اللبتون نكهة عالمية انحفاظ لعدم تفسير إعطاء لغرض

في الخاصية. هذه تنتهك أن شأنها من والتي اقتران ثوابت إنشاء من التمكن أجل من ليبتون ثلاثيات خمس وجود يتطلب الذي β = 1/
√

3

الإنحرافات شرح فقط يمكنه لا المقترح النموذج أن وجد ،b −→ clν مشحون تيار عبر أو b −→ sl+l− محايد تيار عبر إما تتم التي التحولات

إلى التوصل تم الواقع، في الليبتون. نكهة تنتهك إنتقالات تحدث أن خلاله من يمكن أيضا، لكن تجريبياً، الملاحظة (SM) المعياري النموذج عن

في ويلسون معاملي نسبة في كبيرة مساهمة مع العام التحليل خلال من المفضل الحديثة) (الفيزياء NP سيناريو استيعاب على قادر النموذج ان

في أما .Z ′
µ (الغريب) الثقيل المحايد البوزون تبادل الأخيرة هذه على يسيطر أن بشرط محايد، تيار عبر تتم التي للتحولات Cµ

9 = −Cµ
10 المنطقة

النظرية النتائج مع CVL
معامل خلال من (c̄γµb) (ν̄lγ

µl) المؤثر في NP مساهمة توافق ثبت تيارمشحون، عبر تتم التي التحولات يخص ما

الاخير هذا مزج عن الناجم الاقتران لكون الثقيل، البوزون وليس الانتقال، على Wµ المعياري النموذج بوزون تبادل يسيطر أن بشرط العام للتحليل

المطلوبة. الطاقة مجال في مهمل الفرميونات مع

.B الميزون اضمحلال اللبتون، نكهة عالمية انحفاظ عدم القياسي، النموذج وراء ما الحديثة، الفيزياء المفتاحية: الكلمات

Résumé

Afin de donner une explication à la violation de l’universalité de la saveur leptonique (LFUV) actuelle-

ment observée dans des désintégrations du méson B, une approche dépendante du modèle a été con-

sidérée. En effet, une étude a été menée dans ce contexte où une version non-minimale du modèle 331

avec β = 1/
√

3 a été choisie. Cette dernière exige la présence de cinq triplets de leptons afin de pouvoir

générer des couplages qui violeraient l’univesalité leptonique. Dans les transitions à courant neutre

b −→ sl+l− ou à courant chargé b −→ clν, il a été trouvé que, non seulement, le modèle pourrait

expliquer les déviations du modèle standard (SM) observées expérimentalement, mais également, des

transitions qui violeraient la saveur leptonique pourraient survenir. En effect, le modèle s’est avéré

s’accommoder au scénario NP (nouvelle physique) favorisé par l’analyse globale avec une contribu-

tion signifiante dans le rapport des deux coefficients de Wilson dans la région Cµ
9 = −Cµ

10 pour les

transitions à courant neutre, pourvu que ces dernières soient dominées par l’échange du boson neutre

lourd (exotique) Z ′
µ, et celui léger du modèle standard Zµ. Quant aux transitions à courant chargé,

la contribution de NP à l’opérateur (c̄γµb) (ν̄lγ
µl) avec un coefficient CVL

s’est avérée en accord avec

les résultats théoriques de l’analyse globale indépendante du modèle, pourvu que la transition soit

dominée par l’échange du boson chargé léger du modèle standard Wµ et non celui lourd, vu que le

couplage induit par le mixage du boson lourd avec les fermions est négligé à l’ordre d’énergie voulu.

Mots-Clés: Nouvelle Physique (NP), Théorie des Champs Effective (EFT), Extension du Modèle

Standard, Violation de l’Universalité de la Saveur Leptonique (LFUV), Désintégration du méson B.
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