
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE 
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université Hadj Lakhdar - BATNA 1  

Faculté des Sciences de la Matière  

Département de Physique

     THÈSE 
       Présentée en vue de l’obtention du 

      Diplôme de Doctorat troisième cycle 

Par: 
MERAD Asma 

Thème : 

   Résolution de certains problèmes relativistes 
par le formalisme de l’intégrale de chemin 

supersymétrique 

Domaine 
Filière 
Spécialité 

: Sciences de la Matière 
: Physique 
: Physique Théorique  :   

Soutenue le 01/06 / 2022  
Devant le jury: 

Président : Zaim Slimane Pr Université  Batna1 

Rapporteur : Aouachria Mekki Pr Université  Batna1 

Co-Raporteur :  Benzair Houria Pr Université  Ouargla 

Examinateurs: Delenda Yazid Pr Université  Batna 1 

Falek  Mokhtar Pr Université  Biskra 



Acknowledgments 
First and foremost, I thank Allah (SWT) for giving me the patience, the will and  
the energy to continue this thesis.  

I would like to thank Pr M.Aouachria  and Pr H.Benzair  who directed and  

guided me to carry out my thesis well and complete my research work over the 
past few years. 

I must say that this completely exceptional situation allowed me to benefit from 
very high quality supervision and I would like to express my sincere gratitude to 
them for what they have done for me. 

I would like to thank all the members of the jury in advance for their participation, 

their reading and their comments:  Pr  S .Zaim ,Pr Y. Delenda  and Pr . M. 

Falek . 

I also want to express my gratitude and respect to my professors during the years 
of training 

It was a pleasure to work among the theory group at PRIMALAB laboratory who 
where around me. It’s been a great experience and a pleasure to work alongside 
you.  

Thanks to my family and all the friends who were close by in these demanding 
times.   

And Thank you, Sabri, for being a part of my life.



Dedication 

 TO MY DEAR FATHER:  All the phrases and 

expressions can never express my gratitude. You 
instilled in me and I learnt from you the sense of 
responsibility, optimism and how to be self-

confidence to face life’s difficulties. Your advices 
have always guided my steps towards success. Your 
endless patience, understanding and encouragement 

are the great support that you gave me in all my 
life’s moments. I owe you who I am today and who 
I’ll be tomorrow and I will always do my best to 

make you proud of me and never disappoint you. 
May God almighty protect you and bless you with 
health, happiness and peace of mind. May God 

protect you from all harm. 

And to my hasband Sabri , my beloved Mother and 
Family : Hadjer , Sara , Merdjana , Souheib and 
Dahim who have meant and continue to mean so 

much to me.  



Table des matières

1 General introduction 3

2 Resolution of some relativistic problems in the context of new type of

the extended uncertainty principle : 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Klein Gordon particle in a one dimensional box case : . . . . . . . . . . . 12

2.3 Klein Gordon equation with mixed scalar and vector linear potentials case : 14

2.4 Klein Gordon equation with mixed scalar and vector inversely linear po-

tentials case : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Klein-Gordon oscillator equation with a uniform electric field . . . . . . . 20

2.6 Dirac oscillator equation with a uniform electric field . . . . . . . . . . . 26

3 Treatment of spinless particle on the de Sitter and the Anti-de Sitter

spaces : 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Review of the deformed quantum mechanics relation : de Sitter and anti-

de Sitter spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 The (1+3)-dimensional Klein Gordon oscillator in AdS space . . . . . . . 40

3.4 The Klein-Gordon equation with a Coulomb plus scalar potential in AdS

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



4 Reformulation of supersymmetric Feynman’s approach in the context

of deformed algebras :the EUP Dirac Oscillator 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Brief review of (anti)-de Sitter one-dimensional background . . . . . . . . 54

4.3 Dirac oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Calculation of the propagator . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Spectral energies and Spinorial wave functions . . . . . . . . . . . 62

4.3.3 de Sitter Snyder spaces . . . . . . . . . . . . . . . . . . . . . . . . 68

5 General conclusion 73

2



Chapitre 1

General introduction

Quantum field theory is the unfinished coronation of quantum mechanics and the

laws of relativity. In spite of the exploit of its experimental predictions, it remains full of

divergences which one could not eliminate except by methods of regularization mathema-

tics and physical renormalization. Consequently, this major concern and this disturbing

trend were at the origin of the emergence of the theory of quantum deformation modeled

by deformed algebras where the parameters of the deformation are considered as being

cut-off of the theory.

During the last years, the deformed algebra plays an increasingly important role in

various fields of physics and particularly in quantum field theory and it has become a

very interesting perspective topic to physicists. In this regard, many various forms of de-

formed algebra were introduced and are used as model in several problems. Let us quote

some : the description of the low energy excitations of graphene and the Fermi velocity ,

is based on a deformation of the Heisenberg algebra which makes the commutator of mo-

menta proportional to the pseudo-spin[1]. The dynamics of systems with variable masses

in semiconductor heterostructures are formulated by deformed quadratic algebra [2],

the thermostatistics of q-deformed bosons and fermions [3], the q-deformed quark fields

[4], the motion of a 3He impurity atom in the Bose liquid [5]and an atom placed in a

gravitational field [6].For this purpose, the relativistic and non-relativistic quantum me-
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chanics with and without spin have developed significantly in different contexts notably

in the framework of deformed algebras and many works are examined.

Historically, the first deformation known in the literature is non-commutative geome-

try proposed by Connes with a widely applications in different contexts. The conception

of this noncommutativity is due in the first place goes back to Heisenberg and Snyder

as a solution in order to absorb infinite quantities in field theories before the renorma-

lization formalism [7]. Since its establishment, its has continued to evolve and meet the

mathematical requirements of various situations effectively, as it has invaded certain do-

mains of physics. In addition, the noncommutativity between coordinates appeared in

string theory in relation with D-branes and the quantum Hall effect. Although the non-

commutativity between coordinates produces features including the breaking of Lorentz

invariance, UV/IR mixing phenomenon, the violation of unitarity and causality, there

are considerable motivations to study in this direction. Since the development of string

theory [8], several authors solved many problems with different methods in the framework

of noncommutative space. For example, central potential [9, 10]. The Landau problem

with a harmonic oscillator potential on the noncommutative plane and two-sphere are

studied in [11] , and the conditions for the equivalence of the noncommutative quantum

mechanics and the Landau problem are given in [12],Dirac and Klein—Gordon oscillators

[13, 14, 15], Feshbach—Villars equation (spin 0) in interaction with a scalar potential [16]

, magnetic field[17], the Landau problem [18] and hydrogen atom [19, 20].

Another important deformation so-called the generalized uncertainty principle (GUP)

[[21]− [25]]can be obtained from a modified Heisenberg algebra (HUP), introduced in or-

der to take into account the effects of the gravitational field , when we incorporate the gra-

vity theory with quantum mechanic and it is characterized by the existence of a minimal

length scale in the order of the Planck length . This deformation has been used in different

problems as : black hole physics [26, 27],Bosonic oscillator in the presence of minimal

length [28], A generalized Bosonic oscillator in the presence of a minimal length[29],Klein-

Gordon Oscillator[30],the spinning particle subjected to the action of combined vector
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and scalar potentials[31],waves equations with different potentials [32],Scalar electrody-

namics [33],the length scale of the material(graphen)[34],Dirac equation [35].

Besides of this deformed theories previously mentioned, its also exists a deforma-

tion linked to the topology of the physical space, in which the modified uncertainty

principle associated called the extended uncertainty principle (EUP) [[36]− [41]].In ad-

dition, in these research works, Mignemi showed that in a (Anti) de Sitter background

the Heisenberg uncertainty principle modified by adding corrections proportional to the

cosmological constant ∧ = −3λ2, where λ2 ≺ 0 for de Sitter space-time, and λ2 � 0 for

anti-de Sitter space-time. The appearance of this idea (EUP) has drawn great attention

and many papers have been published, we find :the effects of IR gravity on quantum

mechanics[42],particles with position-dependent mass[43],the Ramsauer-Townsend effect

in q-deformed quantum mechanics [44],the DKP oscillator with a linear interaction in the

cosmic string space-time[45],the thermodynamic properties of the relativistic harmonic

oscillators are investigated [46] , Bosonic oscillator under a uniform magnetic field with

Snyder-de Sitter algebra[47],the corrections to Hawking temperature and Bekenstein en-

tropy of a black hole for Rindler and cosmological horizons [48],Bosonic Oscillator on

the de Sitter and the Anti-de Sitter Spaces[49] ,signals of the weak and strong deflection

gravitational lensings are studied [50], the quantum gravity effects in the vicinity of a

black hole[51] ,and the Klein—Gordon oscillator in an uniform magnetic field [52].

Finally and most recently, it is remarkable that, the presence of other forms of the

deformation such as : the new type of EUP cases [53, 54, 55]and the "Doubly-Special-

Relativity" (DSR) theories[[56]− [67]]. We note that the new EUP has been introduced

by the action of the translation operator in a space with a diagonal metric for the purpose

of describing the motion of a quantum particle in curved space . For the DSR theory ,

it was proposed by J. Magueijo and L. Smolin [60, 61] and it was characterized by two

observer independent large-velovity scale c, and large-momentum scale κ.

Similarly in this direction, the path integral formalism has particular interest and

undergone notable development in various domains of physics with different topologies
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modeled by deformed algebras. At this level, the introduction of deformed algebras would

probably be necessary . Because it makes naturally the relative scattering amplitudes to

be ultra-violet regularized and it also gives some information on the regularity and the

renorrmalization of statistical partition function where the parameters of deformation

being cutoff of the theory. Some problems have found their solutions via Feynman path

integral approach with only one deformation parameter . Consequently, in this regard,

a significant number of papers have been published. Citing for instance, the spinning

particle subjected to the action of combined vector and scalar potentials [31, 68] and the

Dirac oscillator [69, 70, 71] are treated via the path integral approach with deformed

GUP . In noncommutative space, the Klein-Gordon and Dirac oscillators [72], and the

harmonic oscillator related to energy-dependent potential [73]. And others important

similar references using path approach as : , the D-dimensional harmonic oscillator in

[74], the Klein Gordon particle [75],the construct the kernel for a free particle by [76], the

one dimension propagator for Dirac oscillator [69],the harmonic oscillator and the radial

hydrogen atom propagators related to energy-dependent potentials are analyzed [77],

the one dimension relativistic spinning particle with vector and scalar linear potentials in

[31], the Klein-Gordon equation with the energy dependent linear and Coulomb potentials

is treated in [78] the two dimensions relativistic Dirac oscillator [70], the one dimension

harmonic oscillator by [79] and the Coulomb potential [80] . However, despite its successful

results, Feynman approach still needs to be sharpened as a quantification tool since in

the case of deformation or that of constraints we do not know a priory how to discretize

the action without choosing the discretization procedure.

For pedagogical reasons, the main objectives of this work are the treatment some

fundamental problems of relativistic and non relativistic quantum mechanics by two

method of quantification : by a direct method , i.e. resolution of equations, and via the

formalism of supersymmetric path integrals within the framework of deformed algebras.

In order, to know the influence of this deformed theory in the physics result obtained as

for example the phenomenon of confinement on the one hand. In other hand, we believe
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that Feynman’s approach is not yet finalized despite its successes. It still requires a deep

development, for example the case of systems with spin and their classical descriptions

via the trajectories, the theory of constraints and the principle of discretization and the

ambiguities encountered in the computation of quantum fluctuations within the frame-

work of deformed algebras. Therefore, our attempt through this work, is then to analyze

the example of the Dirac oscillator for spin 1
2
in the context of the EUP.

In this thesis, we have organized our work in two essential parts : -The first part is

composed of three chapters :

— In chapter 1, we give an explicit calculations of The Klein-Gordon equation (K-G)

in the context of in the context of new type of the extended uncertainty principle

and in the presence of certain interactions : K-G particle confined in a one dimen-

sional box, in the scalar particle with linear vector and scalar potentials , in the

Coulomb-type vector and scalar potentials. In all cases, we succeeded to determine

the energy spectrum and the associated wave functions.

— In chapter 2, we have studied the one-dimensional K-G and Dirac oscillators pro-

blems in the presence of a uniform electric field in the context of new type of the

extended uncertainty principle and the energy spectrum and the corresponding

eigenfunctions are extracted.

— In chapter 3, the three-dimensional K-G oscillator and the K-G equation with a

Coulomb plus scalar potential are treated in the context of Snyder-de Sitter algebra,

the energy spectrum and the corresponding wave functions are calculated and the

particular cases are deduced, such as the case of the absence of deformation and

the case of the zero electric field.

-The second part is devoted especially to the Feynman’s approach, we set up a super-

symmetric path integral formulation in the context of the EUP to establish the Green

function for the Dirac oscillator problem. Following the global representation for the cau-

sal Green function is obtained and the Schwinger proper-time method is introduced . To

determine the appropriate quantum fluctuations and avoid any ambiguities, we discretize
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the measure and choose for any δ-point discretization interval. With the aid of appro-

priate transformations, the propagator has converted to the case of the standard problem

of the Poschl-Teller potential. We obtained the energy spectrum and the corresponding

wave functions then we deduced also the special cases are considered . The last chapter

is devoted to a summary of the main findings and general conclusions.
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Chapitre 2

Resolution of some relativistic

problems in the context of new type

of the extended uncertainty

principle :

2.1 Introduction

Besides of certain different forms of the deformed algebras models mentioned in the

introduction such as the case of generalized uncertainty principle, the (anti) -de Sitter

background associated to the topology of the physical space or the extended uncertainty

principle etc. ...., another deformed form has emerged in the literature of various areas

during these last years, known by the name the new type of EUP with a minimum

momentum dispersion[53, 54, 55]. This new type of EUP has been introduced by the

action of the translation operator in a space with a diagonal metric for the purpose of

describing the motion of a quantum particle in the curved space .
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Tγ (δx) | x >=| x+ δx+ γxδx > (2.1)

where δx is an infinitesimal displacement and the parameter γ is the inverse of a cha-

racteristic length that determines the mixing between the displacement and the original

position state[53, 54]. This translation is non-additive, can be written as to first order in

δx

Tγ (δx) = 1− iδx

~
Pγ. (2.2)

where Pγ is a generalized momentum operator. This property changes the commutation

relation for position and momentum as

[x̂, Pγ] = i~ (1 + γx) , (2.3)

and leads a generalized uncertainty relation

∆x∆Pγ >
~
2

(1 + γ 〈x〉) . (2.4)

The generalized momentum operator and the operators of position satisfying equation

(2.3) can be represented in Hermitian form by [53, 54]

Pγ = −i~Dγ and x̂ = x, (2.5)

with

Dγ =

[
(1 + γx)

d

dx
+
γ

2

]
(2.6)

On the other hand, the nonadditive operator corresponds to the infinitesimal generator

of the q-exponential function[85]

expq (x) ≡ [1 + (1− q)x]
1

1−q , (2.7)
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where x is a dimensionless variable and λ ≡ (1 − q). The equation (2.7) represents

a fundamental mathematical definition for the generalized thermostatistics of Tsallis

and its applications [54]. For this purpose for see what kind of physical importance

the translation operator bears within this framework, some problems were solved for a

quantum system. For example, the study of a particle under a null potential confined in a

square well [53, 54], the solution of the quantum harmonic oscillator where the problem

is converted to the Morse potential case [86], the position-dependent mass system with

a variable potential [87] and, Arda used this displacement operator to study the particle

moving in an inverse square plus Coulomb-like potential which is similar to the Rosen-

Morse potential in usual position space [88], a deformed Bohmian formalism by means of

a deformed Fisher information functional and a derivation a deformed Cramer-Rao bound

in [89], a displaced anisotropic two-dimensional non-Hermitian harmonic oscillator and

graphics for the specific heat and for the entropy of both oscillators compared with several

experimental by [90], the classical mechanics in the curved space and Bohr-Sommerfeld

quantization [55] and a particle confined in a bidimensional box within a generalized

space [91].

The main purpose is to solve analytically and exactly in the context of this new type

of EUP for some important applications :

-Klein Gordon particle in a box model.

-Klein Gordon equation with linear vector and scalar potentials.

-Klein Gordon equation with inversely linear vector and scalar potentials of Coulomb-

type.

-Klein-Gordon and Dirac oscillators with a uniform electric field using the displace-

ment operator method.

Consequently, our attempt is to approach this new type of EUP for a relativistic

problem and to see the influence of this deformation on the properties of the systems

such as the confinement phenomenon and energy value of the Stark shift.
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2.2 Klein Gordon particle in a one dimensional box

case :

We consider a Klein-Gordon (K-G) particle without spin of mass m and charge q

confined to the following one dimensional box :

qV (x) =

 0, 0 ≤ x ≤ L

∞, elsewhere
. (2.8)

So, in the context of this new type of EUP using the displacement operator method, the

stationary Klein-Gordon equation in the presence of a potential V (x) in one dimensional

space is defined by : we put (} = c = 1)

[
(E − qV (x))2 − P 2

γ −m2
]
φ (x) = 0, (2.9)

where Pγ is given by (2.5) . Moreover, the continuity equation can be deduced from the

modified Klein-Gordon Eq (2.9) and its conjugate by this relation

∂ρ

∂t
+DγJγ = 0, (2.10)

with

ρ =
i

2m
(Ψ∗∂tΨ−Ψ∂tΨ

∗) , (2.11)

and Jγ defines the modified current density

Jγ = − i

2m

(
Ψ∗ (1 + γx)

dΨ

dx
−Ψ (1 + γx)

dΨ∗

dx

)
. (2.12)

Now, in order to solve the equation (2.9) in one dimensional box, for 0 ≤ x ≤ L, using

the representation (2.5) and the following transformation :

u = (1 + γx), (2.13)
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we obtain : (
u2 d

2

du2
+ 2u

d

du
+

1

4
+
E2 −m2

γ2

)
φ (u) = 0. (2.14)

To transform this last differential equation homogeneous to another one with constant

coeffi cients, using the following change z = lnu, we get as a result :

(
d2

dz2
+

d

dz
+

1

4
+
E2 −m2

γ2

)
φ (z) = 0, (2.15)

whose the solution in term on the old variable is given by

φ (x) =
N√

(1 + γx)
sin

(√
E2 −m2

ln (1 + γx)

γ
+ ξ

)
, (2.16)

where N is a normalization constant. Using the boundary conditions ϕ (0) = ϕ (L) = 0,

the solution of (2.14) will take the following form

φ (x) =
N√

(1 + γx)
sin

(√
E2
n −m2

ln (1 + γx)

γ

)
, (2.17)

with √
E2
n −m2

ln (1 + γL)

γ
= nπ. (2.18)

This gives rise to the quantized energy

E±n = ±
√
m2 +

n2π2γ2

ln2 (1 + γL)
. (2.19)

Now, if we consider γ = 0 absence of deformation, taking γ → 0 in (2.19) we find,

E± = ±
√
m2 +

n2π2

L2
, (2.20)

which is the result of the ordinary case[92].

The normalization constant N can be obtained from the normalization condition

of the Ψn, follows from the modified definition of the scalar product for Klein Gordon
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equation : ∫ +∞

−∞

i

2m

(
Ψ∗n (x)

∂Ψn (x)

∂t
−Ψn (x)

∂Ψ∗n (x)

∂t

)
= 1, (2.21)

and by a direct calculation, we get

N =

√
2γm

En ln (1 + γL)
. (2.22)

2.3 Klein Gordon equation with mixed scalar and

vector linear potentials case :

The dynamic of Klein-Gordon particle in (1 + 1) dimension in the presence of a scalar

potential S(x) and a vector potential V (x) in the framework of of new type of EUP is

governed by this stationary equation :

[
P 2
γ + (m+ S(x))2 − (E − qV (x))2]ψ (x) , (2.23)

where the vector and the scalar potential are chosen linear as follows

qV (x) = V0x (2.24)

S(x) = S0x.

and we take S2
0 − V 2

0 > 0 so as to avoid complex eigenvalues. We replace S(x) and V (x)

and using the representation (2.5) and (2.24), the equation (2.23) becomes :

[
d2

du2
+

2

u

d

du
+
A

u2
+
B

u
− C2

]
ψ (u) = 0, (2.25)
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where we have used the same transformation (2.13) and this notation

A =
V 2

0 − S2
0

γ4
+

2(EV0 +mS0)

γ3
+
E2 −m2

γ2
+

1

4
(2.26)

B =
2(S2

0 − V 2
0 )

γ4
− 2(EV0 +mS0)

γ3
,

C =

√
S2

0 − V 2
0

γ2
.

To simplify the equation (2.25), we introduce,

ψ(u) = uσ exp(−Cu)z(u), (2.27)

u 7→ y = 2Cu,

so, the differential equation will reduce to the equation of the associated Laguerre poly-

nomials Lkn (y),

[
y
d2

dy2
+ [(2σ + 2)− y]

d

dy
+

1

y
[σ(σ − 1) + 2σ + A] +

1

2C
[B − 2C − 2Cσ]

]
z(y) = 0.

(2.28)

by imposing the constraint,

σ(σ − 1) + 2σ + A = 0, (2.29)

to eliminate the coeffi cient proportional to 1
y
, and

 1
2C

[B − 2C − 2Cσ] = n,

2σ + 2 = k + 1.
(2.30)

The relation (2.29) leads to the following expressions for σ by

σ± = −1

2
± 1

γ

√(
m+ E − (S0 − V0)

γ

)(
m− E − (S0 + V0)

γ

)
(2.31)
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Among these two solutions, the physically acceptable one is only σ+. To extract the

energy spectrum, we substitute the expression (2.31) into the first relation of (2.30) ,

then it is straightforward to show that

E±=-
mV0

S0
-γ
V0

√
S2

0 − V 2
0

S2
0

(
n+

1

2

)
± S2

0 − V 2
0

S2
0

√
−γ2

(
n+

1

2

)2

− γ (2n+ 1)mS0√
S2

0 − V 2
0

+
(2n+ 1)S2

0√
S2

0 − V 2
0

,

(2.32)

It is remarkable that the expression of the energy spectrum is a dependent function of the

deformation parameter γ, γ2 and with powers in n, n2 which explains the phenomenon of

confinement due to the new type of extended uncertainty principle. Moreover , for large

values of n, the second term is not defined of E±. In order to ensure the positivity of the

square root of energy, one must impose an upper bound on the allowed values of n.

Solving the equation (2.23) along with (2.27), (2.28) and (2.31), we obtain the final

form of the wave function in the former variable x as

ψ(x) = Nnλ (1 + γx)
− 1
2

+ 1
γ

√(
m+E− (S0−V0)

γ

)(
m−E− (S0+V0)

γ

)
exp

{
−
√

(S2
0 − V 2

0 )

γ2
(1 + γx)

}

•L
2
γ

√(
m+E− (S0−V0)

γ

)(
m−E− (S0+V0)

γ

)
n

(
2
√

(S2
0 − V 2

0 )

γ2
(1 + γx)

)
, (2.33)

and Nnr is a normalization constant.

Now if we consider γ = 0 absence of deformation, we replace γ = 0 in (2.32) we

find,

E± = −mV0

S0

± (S2
0 − V 2

0 )
3
4

S0

√
(2n+ 1), (2.34)

which is the result of the ordinary case[95, 96]
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2.4 Klein Gordon equation with mixed scalar and

vector inversely linear potentials case :

In this case we choose the vector and the scalar potential inversely linear of Coulomb-

type as follows

qV (x) =
V0

| x | (2.35)

S(x) =
S0

| x | ,

Using the transformation u = 1 + γ | x | and the representation (2.5), for x > 0, the

stationary Klein-Gordon equation in (1 + 1) dimension in the framework of of new type

of EUP (2.23) can be written as :

[
d2

du2
+

2

u

d

du
+
a1

u2
+

a2

u(1− u)
− a2

3

(1− u)2

]
Ψ(u) = 0 (2.36)

where we replaced S(x) and V (x) by their expressions (2.35) and this notation,

a1 =
2(EV0 +mS0)

γ
− (S2

0 − V 2
0 ) +

(E2 −m2)

γ2
+

1

4
, (2.37)

a2 =
2(EV0 +mS0)

γ
− 2(S2

0 − V 2
0 ),

a3 =
√
S2

0 − V 2
0 ) , S0 > V0

In addition, we note that this Eq (2.36) possesses three singular points 0, 1,∞. By means

of the substitutionΨ(u) = up(1−u)qϕ(u), this equation will reduce to the hypergeometric

type

[
u(1− u)

d2

du2
+ [(2p+ 2)− (2p+ 2q + 2)u]

d

du
+ [a2 − 2pq − 2q]

]
ϕ(u) = 0. (2.38)
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where p and q are fixed as follows, p = −1
2
±
√

(S2
0 − V 2

0 )− 2(EV0+mS0)
γ

− (E2−m2)
γ2

q = 1
2
±
√

1
4

+ (S2
0 − V 2

0 ),
(2.39)

and the solution of Eq. (2.38) can be written as

ϕ(u) ∼2 F1 (a, b; c;u) =

∞∑
k=0

(a)k(b)k
(c)k

uk

k!
(2.40)

with the parameters a, b and c are given by


a = p+ q + 1

2
− i
√

(E2−m2)
γ2

b = p+ q + 1
2

+ i
√

(E2−m2)
γ2

c = 1± 2
√

(S2
0 − V 2

0 )− 2(EV0+mS0)
γ

− (E2−m2)
γ2

(2.41)

The mathematical solutions of Eq. (2.36) in the former variable x as

Ψ(x)) = Nγ(1 + γx)pxq2F1 (a, b; c; 1 + γx) , (2.42)

whereNγ is the normalization constant and the boundary condition that (u −→ 1or x −→ 0)

leads the wave function tending to finite, the hypergeometric function reduced to a

polynomial with the following restriction

a = −n, (2.43)

which is the quantization rule of the system and gives us the energy eigenvalues as

E±n = −V0

mS0 + γ
2

[
(n+ q)2 − (S2

0 − V 2
0 )
]

V 2
0 + (n+ q)2

±1

2

{
V 2

0

[
2γmS0 + γ2

(
(n+ q)2 + (V 2

0 − S2
0)
)]2[

V 2
0 + (n+ q)2]2 +

18



4m2
[
(n+ q)2 − S2

0

]
− 4γmS0

[
(n+ q)2 − (S2

0 − V 2
0 )
]
− γ2

[
(n+ q)2 − (S2

0 − V 2
0 )
]2

V 2
0 + (n+ q)2

} 1
2

(2.44)

Also for this case, for large values of n, the second term is not defined . In order to

ensure the positivity of the square root of energy, one must impose an upper bound on

the allowed values of n.

Now in our analysis, it is interesting to study two particular cases

First ; if γ = 0 absence of deformation, we replace γ = 0 in (2.44) we

find,

E±n =
−mV0S0

V 2
0 + (n+ q)2 ±m

√
(n+ q)2 − S2

0

V 2
0 + (n+ q)2 (2.45)

Second, if γ = 0 and S0 = 0 , taking (γ → 0) and S0 = 0,the expression of

energy spectrum (2.44) become

E±n = ± m√
1 +

V 20
(n+q)2

(2.46)

which coincides exactly with those of the literatures[97].

At the end of this section, we mention that in the region x < 0, we get the same form

of the solution (2.42)if we make the change of the variables y = −x.

In this contribution, we have established an exact and explicit solution of some pro-

blems in the context of new type of the extended uncertainty principle using the displace-

ment operator method such as : The Klein-Gordon particle confined in a one dimensional

box, the scalar particle with linear vector and scalar potentials and the case of Coulomb-

type vector and scalar potentials. In these three cases, the exact analytical solution is

determined, the wave functions and the exact energy spectrum are obtained depending

on the deformation parameter γ. On the other hand, the expressions of energy spectrum
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vary with all the power of n , which explain the confinement phenomenon. Also, it is

mentioned that for the last two cases, bound states are limited, the expressions of energy

are not defined for large values of n, one must impose an upper bound on the allowed

values of n. Finally the limiting cases are presented.

2.5 Klein-Gordon oscillator equation with a uniform

electric field

In regular space, the Klein-Gordon oscillator subject to an electric field ΘKG in one

dimensional space is defined by,

ΘKGψ (x) =
[
(p̂+ imωx̂) (p̂− imωx̂) +m2 − (E − qεx̂)2]ψ (x) = 0, (2.47)

which can be written as

{
p2 + (m2ω2 − ε2)x2 + imω[x, p] + 2εEx− (E2 −m2)

}
ψ (x) = 0, (2.48)

where q is the electrical charge and ε is the intensity of electric field. Note that we use

the units where } = c = 1.

In order to solve the Eq. (2.48) , we use the transformation (2.13) and using the

representation (2.5) and (2.3), the Eq (2.48) becomes :

{
d2

du2
+

2

u

d

du
+

(
1

4
− (m2ω2 − ε2)

γ4
+

2εE

γ3
+

(E2 −m2)

γ2

)
1

u2

+

(
2(m2ω2 − ε2)

γ4
+
mω

γ2
− 2εE

γ3

)
1

u
+

(ε2 −m2ω2)

γ4

}
ψ (u) = 0. (2.49)
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Introducing the notation

δ =
1

4
− (m2ω2 − ε2)

γ4
+

2εE

γ3
+

(E2 −m2)

γ2
, (2.50)

η =

(
2(m2ω2 − ε2)

γ4
+
mω

γ2
− 2εE

γ3

)
,

ζ =

√
(m2ω2 − ε2)

γ2
with mω > ε,

we get

ψ
′′

+
2

u
ψ
′
+

(
δ

u2
+
η

u
− ζ2

)
ψ = 0 (2.51)

To simplify Eq. (2.51), we introduce,

ψ(u) = uσ exp(−ζu)z(u), (2.52)

u 7→ y = 2ζu,

where σ is a constant to be determined later. After using (2.52), the differential Eq. (2.51)

will reduce to the equation of the associated Laguerre polynomials Lkn (y),

[
y
d2

dy2
+ [(2σ + 2)− y]

d

dy
+

1

y
[σ(σ − 1) + 2σ + δ] +

1

2ζ
[η − 2ζ − 2ζσ]

]
z(y) = 0.

(2.53)

We impose the constraint,

σ(σ − 1) + 2σ + δ = 0, (2.54)

to eliminate the coeffi cient proportional to 1
y
, and

 1
2ζ

[η − 2ζ − 2ζσ] = n,

2σ + 2 = k + 1.
(2.55)
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The relation (2.54) leads to the following expressions for σ by

σ± = −1

2
± 1

γ

√
m2 − E2 +

m2ω2 − ε2

γ2
− 2Eε

γ
(2.56)

Among these two solutions, the physically acceptable one is only σ+. To extract the

energy spectrum, we substitute the expression (2.56) into the first relation of (2.55).

Then it is straightforward to show that

E± = − εγ

2mω
[(2n+ 1) Ω− 1]± Ω

√
m2 +mω [(2n+ 1)Ω− 1]− γ2

4
[(2n+ 1) Ω− 1]2,

(2.57)

with Ω =

√
(m2ω2−ε2)

mω
. We should note that the expression of energy spectrum contains

all corrections of all orders of (εγ)2. This is related to the exact contribution to the Stark

effect in this framework of the deformation. On the other hand, it varies by the power of

n2, which explain the confinement phenomenon. For large values of n, the square of the

energy spectrum (E)2 becomes negative. Thus, in order to ensure the positivity of the

the square of the energy, one must impose an upper bound on the allowed values of n.

Expanding up to the first order in γ2, we obtain

E±=±Ω
√
m2 +mω [(2n+ 1)Ω− 1]-

εγ

2mω
[(2n+ 1) Ω− 1]∓ γ2Ω [(2n+ 1) Ω− 1]2

8
√
m2 +mω [(2n+ 1)Ω− 1]

.

(2.58)

The first term in (2.58) is the energy spectrum of the usual Klein-Gordon oscillator sub-

ject to the uniform electric field. The second and the third terms represent the quantum

fluctuations due to the new type of extended uncertainty principle. It is remarkable that

the expression of the energy spectrum contains additional deformed correction terms de-

pending on the deformation parameter γ, γ2 and with powers in n2 which explains the

phenomenon of confinement. We can see that the energy spectrum in the context of this

deformation is smaller than the energy in the ordinary case.

Solving the Eq (2.47) along with the relations (2.52), (2.53) and (2.56), we obtain the
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final form of the wave function in the former variable x as

ψ(x) = Nnr (1 + γx)
− 1
2

+ 1
γ

√
m2−E2+m2ω2−ε2

γ2
− 2Eε

γ exp

{
− 1

γ2

√
(m2ω2 − ε2) (1 + γx)

}

L
2
γ

√
m2−E2+m2ω2−ε2

γ2
− 2Eε

γ

n

(
2

γ2

√
(m2ω2 − ε2)(1 + γx)

)
, (2.59)

and Nnr is a normalization constant.

We can present our results graphically for some numerical values of the physical

parameters. We will take m = 1 and ω = 10 in our analysis. We will plot the curves only

for E+ as the curves for E− do not show different physical behavior.

In Fig.(1), we plot the energy levels as a function of quantum number n for various

values of γ and for ε = 0. We see that the values for non-zero γ coincide. If we take

a fixed but non-zero ε as in Fig.(2), we find that the energy behavior is different. The

non-zero electric field yields a physical effect on the system. The Fig.(3) and Fig.(4) show

the behavior of the energy for varying γ and for a fixed ε (we used ε = 0 and ε = 9,

respectively). Here, we see the effect of γ on the energy behavior for some fixed n values.
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Some special cases

We can consider some special cases for vanishing γ and ε.

For γ = 0, namely in the absence of deformation, we replace γ = 0 in (2.57) find,

E± = ∓Ω
√
m2 −mω + (2n+ 1)mωΩ. (2.60)

The case for ε = 0, namely in the absence of an electric field implies Ω = 1, and the

expression of the energy spectrum (2.57) becomes

E± = ±
√
−γ2n2 +m2 + 2nmω. (2.61)

In the case where γ = ε = 0, we have the pure Klein-Gordon oscillator case. This limit

yields

E± = ±
√
m2 + 2nmω, (2.62)

which is in agreement with the result of the ordinary case.

2.6 Dirac oscillator equation with a uniform electric

field

The Dirac oscillator with a uniform electric field is defined by the expression [98],

[α (p̂− imωβx̂) + βm] Ψ(x) = (E − qεx̂) Ψ(x), (2.63)

where Ψ(x) =

 φ1(x)

φ2(x)

 and α, β are the Dirac matrices given by

α = σ2 =

 0 −i

i 0

 , and β = σ3 =

 1 0

0 −1

 . (2.64)
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Note that we are using the units where (} = c = 1). Using the matrices (2.64) and the

definition of Ψ(x) in Eq (2.63), we obtain the system, (px + imωx)φ2 = (E −m− εx)φ1 (x) ,

(px − imωx)φ1 = (E +m− εx)φ2 (x) .
(2.65)

Introducing the notation Π± = px ± imωx and M± = E ±m− εx, the new form of the

system (2.65) can be obtained as Π+φ2 (x) = M−φ1 (x) ,

Π−φ1 (x) = M+φ2 (x) .
(2.66)

In order to decouple the above system, we write φ2 in terms of φ1,

φ2 (x) =
(
M+

)−1
Π−φ1 (x) , (2.67)

and we replace it in the first equation as

Π+
(
M+

)−1
Π−φ1 (x) = M−φ1 (x) ,

using

Π+
(
M+

)−1
=
(
M+

)−1
Π+ + [Π+,

(
M+

)−1
]. (2.68)

Then we multiply the whole equation by M+ on the left to get

[
Π+Π− −M+M− +M+[Π+,

(
M+

)−1
]Π−

]
φ1 (x) = 0, (2.69)

where [·, ·] is the commutator between two operators.

We notice that the first two terms represent exactly the Klein-Gordon oscillator. We

use

ΘKG = Π+Π− −M+M−, (2.70)
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where

ΘKG = (p̂+ imωx̂) (p̂− imωx̂) +m2 − (E − qεx̂)2 , (2.71)

and the third term characterizes the spinor effect of the particle. Using the definitions,

the equation (2.69) can be written as

{
ΘKG + (E +m− εx)

[
(px + imωx),

1

(E +m− εx)

]
(px − imωx)

}
φ1 (x) = 0. (2.72)

By a direct calculation, the Eq (2.72) becomes

{
ΘKG −

iε(1 + γx)

(E +m− εx)
(px − imωx)

}
φ1 (x) = 0, (2.73)

where we used the Eq (2.3) .

To solve the Eq. (2.73) , we use the change of variable (2.13) . Then we obtain,

{
d2

du2
+

(
2

u
+

1

r − u

)
d

du
+
η

u
+
mω

γ2

1

(r − u)
+

δ

u2
+

τ

u(r − u)
− ζ2

}
φ1 (u) = 0, (2.74)

where

δ =
1

4
− (m2ω2 − ε2)

γ4
+

2εE

γ3
+

(E2 −m2)

γ2
, (2.75)

η =

(
2(m2ω2 − ε2)

γ4
+
mω

γ2
− 2εE

γ3

)
,

τ =

(
1

2
− mω

γ2

)
,

ζ2 =

√
(m2ω2 − ε2)

γ2
with mω > ε,

r =
γ (E +m)

ε
+ 1.

In order to simplify the Eq (2.74), we introduce

φ1 (u) = uσ exp(−ζu)G (u) , (2.76)
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where σ is a constant to be determined letter. We obtain

{
d2

du2
+

(
2σ + 2

u
+

1

r − u − 2ζ

)
d

du
+

1

u2
(σ(σ − 1) + 2σ + δ) +

1

u
(−2ζσ + η − 2ζ) +

1

(r − u)
(
mω

γ2
− ζ) +

1

u(r − u)
(σ + τ)

}
G (u) = 0 (2.77)

To reduce this equation to a class of known differential equation with a polynomial

solution, we need to to eliminate the coeffi cient proportional to 1
u2
. We impose

σ(σ − 1) + 2σ + δ = 0, (2.78)

and this leads to the expression

σ± = −1

2
± 1

γ

√
m2 − E2 +

m2ω2 − ε2

γ2
− 2Eε

γ
. (2.79)

Among these two solutions, the physically acceptable one is only σ+, and the second

solution leads to a non-physical wave function. We introduce z = u
r
, then Eq. (2.77)

takes the form

{
d2

dz2
+

(
2σ + 2

z
− 1

z − 1
− 2rζ

)
d

dz
+

(−2rζσ + rη − 2rζ + σ + τ)

z
+

(− rmω
γ2

+ rζ − σ − τ)

z − 1

}
G(z)=0,

(2.80)

which is the confluent Heun differential equation [93, 94]. Let us denote the confluent

Heun function by HC , then the solutions can be written as

G (z) = C1HC(a, b, c, d, e, z) + C2 exp(b)HC(a,−b, c, d, e, z) (2.81)
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with

a = −2

(
γ (E +m)

ε
+ 1

)√
(m2ω2 − ε2)

γ4
, (2.82)

b =
2

γ

√
m2 +

m2ω2

γ2
−
(
E +

ε

γ

)2

,

c = −2,

d =

(
γ (E +m)

ε
+ 1

)(
2(m2ω2 − ε2)

γ4
− 2εE

γ3

)
,

e = −
(
γ (E +m)

ε
+ 1

)(
2(m2ω2 − ε2)

γ4
+
mω

γ2
− 2εE

γ3

)
+
mω

γ2
+ 1.

Then, the final expression for φ1 (x) is

φ1 (x) = (1 + γx)σ

exp(-ζ (1 + γx))
[
C1HC(a, b, c, d, e,

(1 + γx)

r
) + C2 exp(−b)HC(a,−b, c, d, e, (1 + γx)

r
)

]
(2.83)

Using the relation (2.67) and the expression of φ1 (x) we also find

φ2 (x) =
−i

E +m− εx

(
(1 + λx)

d

dx
+
λ

2
+mωx

)
φ1 (x) (2.84)

In order to have a polynomial solution for the confluent Heun equation, we need to cut

the series which are given by the recurrence relation. For a polynomial solution of degree

N , we impose [93],
d

a
+
b+ c

2
+N + 1 = 0. (2.85)

Using the condition (2.85) and replacing the parameters a, b and c by their expressions

(2.82), we finally get the following energy spectrum

E± = −εγΩN

mω
± Ω

√
m2 + 2mωΩN − γ2Ω2N2 with Ω =

√
(m2ω2 − ε2)

mω
(2.86)
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In this case, one notes practically the same remarks of the Klein-Gordon oscillator case.

The expression of the energy spectrum contains all corrections of all orders of (εγ)2 . This

is related with the exact contribution to the Stark effect in this deformation framework

and it varies with the power of N2, which explains the confinement phenomenon. For

large values of N , the square of the energy spectrum (E)2 becomes negative and, in order

to ensure positivity of the the square of the energy, one must impose an upper bound on

the allowed values of N .

Expanding the energy spectrum up to first order in γ2, we obtain

E± = ±Ω
√
m2 + 2mωΩN − εγΩN

mω
∓ γ2Ω3N2

2
√
m2 + 2mωΩN

. (2.87)

The first term in (2.87) is the energy spectrum of the usual Dirac oscillator subject to a

uniform electric field. The second and the third terms represent the quantum fluctuations

due to the new type of extended uncertainty principle.

We can also present our results for the Dirac oscillator graphically for some numerical

values of the physical parameters. We will takem = 1 and ω = 10 in our analysis. We will

plot the curves only for E+ as the curves for E− do not show different physical behavior.

One can easily see that the energy behavior is the same as in the Klein-Gordon oscillator

case.

In Fig.(5), we plot the energy levels as a function of quantum number N for various

values of γ and for ε = 0. We see that the values for non-zero γ coincide. If we take

a fixed but non-zero ε as in Fig.(6), we find that the energy behavior is different. The

non-zero electric field yields a physical effect on the system. The Fig.(7) and Fig.(8) show

the behavior of the energy for varying γ and for a fixed ε (we used ε = 0 and ε = 9,

respectively). Here, we see the effect of γ on the energy behavior for some fixed N values.
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Some special cases :

We will consider some special cases for vanishing γ and ε.

For γ = 0, namely in the absence of deformation, we replace γ = 0 in (2.86) find,

E± = ±Ω
√
m2 + 2mωΩN. (2.88)

The case for ε = 0, namely in the absence of an electric field implies Ω = 1, and the

expression of the energy spectrum (2.86) becomes

E± = ±
√
m2 + 2mωN − γ2N2. (2.89)

In the case where γ = ε = 0, we have the pure Dirac oscillator case. This limit yields

E = ±
√
m2 + 2Nmω, (2.90)

which is in agreement with the result of the ordinary case.

In this contribution, we studied the exact solutions of one-dimensional Klein-Gordon

and Dirac oscillators subject to a uniform electric field in the context of the new type of

the extended uncertainty principle using the displacement operator method. The energy

eigenvalues and eigenfunctions are determined for both cases. In the Klein-Gordon os-

cillator case, the wave functions are expressed in terms of the associated Laguerre po-

lynomials and in the Dirac oscillator case, the wave functions are obtained in terms of

the confluent Heun functions. In the latter case, the energy eigenvalues are obtained by

the polynomial reduction of the confluent Heun functions. The analytical expression of

the energy spectrum contains corrections of all orders of (εγ)2 . This is related to the

exact contribution to the Stark effect in this deformation framework and it varies with

the power of n2, which explains the confinement phenomenon. For large values of n, the

square of the energy spectrum (E)2 becomes negative and, in order to ensure positivity

of the square of the energy, one must impose an upper bound on the allowed values of n.
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The energy eigenvalues are plotted as a function of n for various numerical values of the

parameter γ in order to show our result graphically. The limiting cases are also studied

using the special values of the physical parameters for both the Klein-Gordon and Dirac

oscillator. It is remarkable that the results obtained in this context of the displacement

operator can be interpreted as the case of systems with variable masses depending on the

position. This study really needs more details, will make the goal of a future project.
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Chapitre 3

Treatment of spinless particle on the

de Sitter and the Anti-de Sitter

spaces :

3.1 Introduction

In these research works [36, 37] , Mignemi showed that it can be derived from the de-

finition of quantum mechanics on a de Sitter background with a suitably chosen parame-

trization, that is, the Heisenberg uncertainty principle should be modified in a (anti)- de

Sitter background by introducing corrections proportional to the cosmological constant

∧ = 3
R2
, where R2 ≺ 0 for de Sitter space-time, and R2 � 0 for anti-de Sitter space-

time[99]. This modification known in the literature by the extended uncertainty principle

(EUP), it can be achieved by modifying the usual canonical commutation relations. Over

past decades, the implications of this (EUP) hypothesis have developed significantly and

many works are examined for quantum mechanics and classical on the background (anti)

-de Sitter[38, 39, 44, 46].

In this analysis, first we are interested to study two fundamental problems of quantum
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mechanics in the context of (anti)-de Sitter spaces :

-To establish the exact solutions of the (1+3)-dimensional Klein-Gordon oscillator.

-To determine the corrections to the spectrum of the Klein-Gordon equation for

the coulomb plus scalar potentials using the perturbation theory. This gives rise to the

appearance of a minimal uncertainty in momentum. On the other, we also study the

effect of the deformation and the changes made to relativistic system in the framework

of the extended uncertainty principle.

3.2 Review of the deformed quantum mechanics re-

lation : de Sitter and anti-de Sitter spaces

The extended uncertainty principle (EUP) can be obtained from the definition of

quantum mechanics on (anti) de sitter (dS) space-time. It is well known that (anti)-de

Sitter space-time can be realized as a hyperboloid of equation ηabζ
aζb = ±R2 embedded

in five-dimensional Minkowski space with coordinates ζa(a = 0, 1, 2, 3, 4) and metric

ηab = diag (1,−1,−1,−1,±1), whenR→∞ the de Sitter (dS) invariant special relativity

(SR) will be reduced to ordinary special relativity [100]

ds2 = ηabdζ
adζb = Bµν (x) dxµdxν ; µ = ν = 0; 1; 2; 3, (3.1)

where the parametrization of the hyperboloid is given by projective (Beltrami) coordi-

nates [101, 102],

xµ =
ζµ
ζ4

(3.2)

and

Bµν (x) =

(
1− ηστx

σxτ

R2

)(
ηµν − xµxν

R2

)
, (3.3)

is Beltrami metric. Note that, the Beltrami coordinate system, is similar to the Minkowski

one in a flat space-time, and the Beltrami de sitter (BdS) space-time is the dS space-
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time with Beltrami metric. The generators of de Sitter in Beltrami coordinates and the

momentum operators satisfy the following commutation relations [36, 37][103, 104, 105]

[Jµν , Jσρ] = i
(
ηνρJµσ − ηνσJµρ + ηµσJνρ − ηµρJνσ

)
, (3.4)

[Jµν , pρ] = i
(
ηµρpν − ηνρpµ

)
; [pµ, pν ] =

iJµν
R2

, (3.5)

and

[xµ, pν ] = i
(
η
µν

+
xµxν
R2

)
; [xµ, xν ] = 0. (3.6)

where µ ν = 0,1, 2, 3 and Jµν are the generators of Lorentz transformations given by

Jµν = xµpν − xνpµ
In the theory of SR on (A)dS space-time there are two universal parameters : the

speed of light c and the cosmological constant ∧ [100].

The non-relativistic modified commutation relations leading to the extended commu-

tation relations, is given by [39]
[Xj, Pk] = i} (δjk + αXjXk) ,

[Xj, Xk] = 0,

[Pj, Pk] = i}αLjk,

(3.7)

where j, k = 1, 2, 3, Ljk = XjPk−XkPj, and α being the constant deformation parameter,

where α is a positive parameter proportional to the cosmological constant or inversely

proportional to the square of the anti-de Sitter radius (α = H2 :H2 is the Hubble rate)[41],

and in the limit α −→ 0, we recover the canonical commutation relations from standard

quantum mechanics.

As the case of ordinary quantum mechanics, the commutation relation (3.7) lead to

the following extended uncertainty principle (EUP)

(∆Xi) (∆Pi) �
}
2

(
1 + α (∆Xi)

2) , (3.8)
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which implies the appearance of a nonzero minimal uncertainty in momentum. The mi-

nimization of (3.8) with respect to ∆Xi gives

(∆Pi)min = }
√
α, ∀ k. (3.9)

The most representation of the position and momentum operators obeying relation (3.7)

is given by

Xi = xi; Pi =
}
i

(δij + αxixj)
∂

∂xi
, (3.10)

where the operators xi and pj satisfy the canonical commutation relation [xi, pj] = i}δij.

Using the symmetrically condition of the operators of position and momentum, the mo-

dified scalar product can be written as

〈φ |ψ〉 =

∫
d3r

(1 + αr2)2φ
× (r)ψ (r) ; where r =

3∑
i=1

x2
i . (3.11)

Now, the extended uncertainty principle for the de Sitter space dS space can be construc-

ted by replacing α −→ −α, in this case and contrary to the previous case, we will have,

(∆Xi) (∆Pi) ≥
}
2

(
1− α (∆Xi)

2) . (3.12)

let’s notice this relation does not give the minimal uncertainty in momentum, we get

−(∆Pi)

α}
− 1

α

√
α +

(∆Pi)
2

}2
≤ (∆Xi) ≤ −

(∆Pi)

α}
+

1

α

√
α +

(∆Pi)
2

}2
. (3.13)

and in the limit (∆Pi)→ 0 the space become finite − 1√
α
≤ (∆Xi) ≤ 1√

α
.

A representation of Xi and Pi that satisfies for the de Sitter space dS space, may be

taken as

Xi = xi; Pi =
}
i

(δij − αxixj)
∂

∂xj
. (3.14)

In the following section, we examine the Klein Gordon oscillator and The Klein-Gordon
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equation with a Coulomb plus scalar potential in anti-de Sitter space. we put (} = c = 1)

3.3 The (1+3)-dimensional Klein Gordon oscillator

in AdS space

In this section, we are interested in solving the (1+3)-dimensional Klein Gordon oscil-

lator, in position space with deformed commutation relations. In this case, the stationary

equation describing the Klein Gordon oscillator in (1+3)-dimension is given by

[(
E2 −m2

)
− (P+ imωr) (P− imωr)

]
Φ (r) = 0, (3.15)

where m is the rest mass, and ω is the classical frequency of the oscillator.

Applying the definition of the position and momentum operators reported in sect (2),

the momentum squared operator can be expressed as

P 2 = −
[(

1 + αr2
) ∂
∂r

]2

− 2

r

(
1 + αr2

) ∂
∂r

+
L2

r2
, (3.16)

and the Klein Gordon oscillator Eq (3.15) can be rewritten as the following differential

equation :

(
m2 − E2

)
Φ=

{[(
1 + αr2

) ∂
∂r

]2

+
2

r

(
1 + αr2

) ∂
∂r
− L̂2

r2
−m2ω2r2 +mω

(
3 + αr2

)}
Φ (r).

(3.17)

Thus, it’s appropriate to split the energy eigenfunction Φ into a radial part and an angular

part as :

Φ (r) = Rn,` (r)Y`,m (θ, ϕ) , (3.18)
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where Yn,` are the eigenfunction of the angular part.

L̂2Y`,m (θ, ϕ) = ` (`+ 1)Y`,m (θ, ϕ) (3.19)

This allows us to rewrite Eq. (3.17) as

[[(
1 + αr2

) d
dr

]2

+
2

r

(
1 + αr2

) d
dr
− ` (`+ 1)

r2
−m2ω2r2 +mωαr2 + E2 −m2 + 3mω

]
Rn,` (r)=0.

(3.20)

To solve this equation, we begin by making the following change of variable

√
αρ = tan−1

√
αr, (3.21)

which maps the interval r ∈ ]0,∞[ to ρ ∈
]
0, π

2
√
α

[
and brings Eq. (3.20) to the following

form

[
d2

dρ2
+

2
√
α

tan (
√
αρ)

d

dρ
− α` (`+ 1)

tan2 (
√
αρ)
−mω

(mω
α
− 1
)

tan2
(√
αρ
)

+ E2 −m2 + 3mω

]
Rn,` (ρ)=0.

(3.22)

To eliminate the first derivative, we introduce the following ansatz

Rn,` (ρ) = e
−
√
α
∫ ρ dζ

tan(
√
αζ) gn,` (ρ) , (3.23)

after some manipulation, we obtain

[
d2

dρ2
− α` (`+ 1)

tan2 (
√
αρ)
−mω

(mω
α
− 1
)

tan2
(√

αρ
)

+ E2 −m2 + 3mω + α

]
gn,` (ρ) = 0.

(3.24)

Introducing now the following change of function

gn,` (ρ) = sin`+1
(√

αρ
)

cosσ
(√

αρ
)
Fn,` (ρ) , (3.25)

where σ is a constant to be determined letter. By means of the substitution given in Eq.
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(3.25), the last differential equation (3.24)take the following form :

 d2

dρ2
+ 2
√
α

(
(`+1)

tan(
√
αρ)
− σ tan (

√
αρ)

)
d
dρ
− ασ (2`+ 3)

+α
[
σ (σ − 1)− mω

α

(
mω
α
− 1
)]

tan2 (
√
αρ) + E2 −m2 + 3mω − `α

Fn,` (ρ) = 0.

(3.26)

To eliminate the term tan2 (
√
αρ) by demanding

σ (σ − 1)− mω

α

(mω
α
− 1
)

= 0, (3.27)

then it leads to the following expression of σ

σ+ =
mω

α
, σ− = 1− mω

α
. (3.28)

Among these two solutions, the physically acceptable one is only σ+, the second solution

leads to a non physically acceptable wave function. Then Eq. (3.26) simplifies to

[
d2

dρ2
+ 2
√
α

(
`+ 1

tan (
√
αρ)
− mω

α
tan

(√
αρ
)) d

dρ
− 2`mω + E2 −m2 − α`

]
Fn,` (ρ)=0. (3.29)

At this stage, we introduce another change of variable defined by

η = 2 sin2
(√

αρ
)
− 1. with − 1 � η � 1 (3.30)

the equation (3.29) reduces to

[(
1− η2

) d2

dη2
+
(
`− mω

α
+ 1−

(
`+

mω

α
+ 2
)
η
) d

dη
+
E2 −m2 − α`− 2`mω

4α

]
Fn,` (η)=0.

(3.31)

which is exactly the Jacobi polynomials differential equation P
(a,b)
n (η) whose parameters

a and b are given by imposing the following constraint

E2 −m2 − α`− 2`mω

4α
= n (n+ a+ b+ 1) , (3.32)
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a =
mω

α
− 1

2
; b = `+

1

2
, (3.33)

where n is non-negative integer and the solution can be written in terms of Jacobi poly-

nomials as

Fn,` (η) = P
(mωα −

1
2
,`+ 1

2)
n (η) . (3.34)

Using the the former variable r, we will have the following final form of the wave function

Φ :

Φn,` (r) = C r`

(1 + αr2)
mω
2α

+ `
2

P
(mωα −

1
2
,`+ 1

2)
n

(
αr2 − 1

1 + αr2

)
Y`,m (θ, ϕ) , (3.35)

where C is the normalization constant.

To determine the expressions of the energy spectrum of Klein Gordon oscillator ,

using the condition (3.32) and replacing the parameters a,and b by their expressions

(3.33), we finally get the following result

E±AdSn,l = ±
√
m2 + 2mω (2n+ `) + α [4n (n+ l + 1) + l], (3.36)

where ± denotes the positive (negative) energy solutions associated respectively with the

particle and the antiparticle for relativistic quantum systems.

Notice that the energy levels depend on the quantum number n and n2 and for large

n it is asymptotic to

E±AdSn → ±2
√
αn. (3.37)

This effect is due to the modification of the Heisenberg algebra. As a result, we remark

that for a fixed value of n, the energy E+AdS
n,l increases monotonically with the increase

of the EUP parameter α. Expanding the expression of the energy levels to first order in

α, we obtain

E±AdSn,l = ±
√
m2 + 2mω (2n+ `)

(
1 +

α

2

(4n (n+ l + 1) + l)

(m2 + 2mω (2n+ `))

)
. (3.38)
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The first term is the energy spectrum of the ordinary 3d Klein-Gordon oscillator, while

the second term is the corrections brought about by the existence of nonzero minimal

uncertainty in momentum, and when we study the limit α→ 0, we obtain

E±AdSn,l = ±
√
m2 + 2mω (2n+ `), (3.39)

which is the same result in ordinary case. Before finishing this section, let us see the

influence of the EUP in dS on the energy eigenvalues (α→ −α) and by the same steps

and same techniques, we arrive

E±dSN,j = ±
√
m2 + 2mω (2n+ `)− α [4n (n+ l + 1) + l]. (3.40)

In this case, for large values of n , the square of the energy spectrum
(
EdS
n,µ

)2
becomes

negative. In order to ensure positivity of the the square of the energy, one must impose

an upper bound on the allowed values n and l.

3.4 The Klein-Gordon equation with a Coulomb

plus scalar potential in AdS space

The hydrogen atom is a fundamental problem of quantum mechanics ; it is of consi-

derable importance in atomic and molecular physics. it allows to understand the spectra

of hydrogenoids and to explain the structure of the energy levels and the spectra of

the atoms in the case of models with independent electrons or approach of an average

field. Furthermore, the hydrogen atom has grown enormously ;especially in the context of

deformed algebras and several papers have been studied. In non relativistic case, the spec-

trum and eigenfunctions in the momentum representation for 1D Coulomb-like potential

with deformed Heisenberg algebra are found exactly in [106, 107], for higher dimen-

sions, the problem becomes complicated, only perturbative solutions have been found
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[[108]− [111]]. On the contrary, in the case of relativistic quantum mechanics, no study

is presented, accordingly, our attempt through this letter will be addressed the problem

in question for the case of the Klein Gordon equation in the framework of anti-de Sitter

spaces.

To study the eigenvalue problem for hydrogen atom in 3-dimensional case we start

considering a standard Hamiltonian :

{
P 2 + (M + Vs(r))

2 − (E + Vv(r))
2
}
ψ(r) = 0 , (3.41)

where M and E denote the mass and the energy of the particle, respectively and r =√∑3
j=1X

2
j and P =

√∑3
j=1 P

2
j satisfy deformed commutation relation (3.7). The Cou-

lomb potential and the scalar potential are taken as

Vs(r) = −Vs
r

Vv(r) = −Vv
r
. (3.42)

The scalar potential is added to the mass term in the Klein Gordon equation and may be

understood as an effective position-dependent mass, which is of considerable significance

in various areas of physics, citing for instance quantum well and quantum dots[112, 113],

in the description of electronic properties and band structure of semiconductor hetero-

structures [114], ...etc.

Now, we apply the definition forXj and Pj (3.10) reported in section 2, the momentum

squared operator (3.16)can be expressed

P 2 = −
(
1 + αr2

)2 ∂2

∂r2
−
(
1 + αr2

)
2αr

∂

∂r
− 2

r

(
1 + αr2

) ∂
∂r

+
L2

r2
, (3.43)

if we expand (3.43) at the first order in α, we have

P 2 = −
(
1 + 2αr2

) ∂2

∂r2
− 2

r

(
1 + 2αr2

) ∂
∂r

+
L2

r2
+O

(
α2
)
, (3.44)
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therefore, the Klein Gordon Eq (3.41) can be written as follows

{
−
(
1 + 2αr2

) ∂2

∂r2
− 2

r

(
1 + 2αr2

) ∂
∂r

+
L2

r2
+ (M − Vs

r
)2 − (E +

Vv
r

)2

}
ψ(r) = 0,

(3.45)

or as follows ;

{
−
(
∂2

∂r2
+

2

r

∂

∂r

)
− 2αr2

(
∂2

∂r2
+

2

r

∂

∂r

)
+
L2

r2
+ (M − Vs

r
)2 − (E +

Vv
r

)2

}
ψ(r) = 0,

(3.46)

and using this replacement
∂2

∂r2
+

2

r

∂

∂r
=

1

r

∂2

∂r2
r, (3.47)

the Eq (3.46) becomes

{
−
(

1

r

∂2

∂r2
r

)
− 2αr2

(
1

r

∂2

∂r2
r

)
+
L2

r2
+ (M − Vs

r
)2 − (E +

Vv
r

)2

}
ψ(r) = 0. (3.48)

To solve this equation, using this separate form ;

ψ(r) =
Rα(r)

r
Yl,m (θ, ϕ) . (3.49)

where Yl,m (θ, ϕ) are spherical harmonics, eigenvectors of the orbital kinetic moment

L2Yl,m (θ, ϕ) = ` (`+ 1)Yl,m (θ, ϕ) =

(
k2 − 1

4

)
Yl,m (θ, ϕ) , (3.50)

with k = l + 1
2
. Substitution (3.49) and (3.50) into Eq. (3.48), We obtain the radial

equation of the Klein-Gordon equation in AdS space :

[
− d2

dr2
+
k2 + V 2

s − V 2
v − 1

4

r2
+
(
M2 − E2

)
− 2 (MVs + EVv)

r
− 2αr2

(
d2

dr2

)
+O

(
α2
)]
Rα(r)=0,

(3.51)
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which can be written as

[
H0 + αW +O

(
α2
)]
Rα(r) = 0, (3.52)

with H0 represents the undisturbed Hamiltonian corresponds to the ordinary case α = 0

of the Klein-Gordon equation for Hydrogen atom with scalar potential given by

H0 = − d2

dr2
+
k2 + V 2

s − V 2
v − 1

4

r2
+
(
M2 − E2

)
− 2 (MVs + EVv)

r
(3.53)

and W is the disturbed Hamiltonian

W = −2r2 d
2

dr2
. (3.54)

To simplify the shape of H0 and W , introducing this notation

β =
EVv +MVs√
M2 − E2

, ν =
√
k2 + V 2

s − V 2
v −

1

2
and a =

√
M2 − E2 , (3.55)

we will then have

H0 = − d2

dr2
+
ν (ν + 1)

r2
+ a2 − 2aβ

r
(3.56)

and the new the expression form for W,

W = −2ν (ν + 1) + 2r2
(
H0 − a2

)
+ 4raβ. (3.57)

We have used (3.53).

In order to study the influence of this deformation on the energy levels of the hydro-

gen atom we will consider the term αW as perturbation in ordinary quantum mechanics.

Therefore, the perturbation theory can be used to calculate the correction to the energy

levels of the hydrogen atom in the first-order in α and to avoid complex spectra, subse-
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quently, we consider the case of the weak Coulomb potential such that k2 +V 2
s −V 2

v > 0,

otherwise the solution becomes oscillatory .

Now, for α = 0, the exact solution of the ordinary Klein Gordon equation for Hydro-

gen atom can be found in [115, 116]. The eigenvalues and the corresponding normalized

eigenfunctions expressed according to Laguerre’s polynomial are given by

R0
n′ν(r) = Nn′l

n′!Γ(2ν + 2)

Γ(2ν + 2 + n′)
(2ar)ν+1 e−arL2ν+1

n′ (2ar) (3.58)

where Nn′l is normalization constant determined by this condition∫
R0∗
n′ν(r)R

0
n′ν(r)dr = 1. (3.59)

By using the recursion relation for Laguerre polynomials [117]

xL2ν+1
n = 2(n+ ν + 1)L2ν+1

n − (n+ 1)L2ν+1
n+1 − (n+ 2ν + 1)L2ν+1

n−1 . (3.60)

and

d2
n =

∫
xαe−xLαn (x)Lαn (x) dx =

Γ(n+ α + 1)

n!
(3.61)

where d2
n is the square of the norm of Lαn (x) , the normalized radial functions are

R0
n′ν(r) =

√
an′!

(ν + n′ + 1) Γ(2ν + 2 + n′)
(2ar)ν+1 e−arL2ν+1

n′ (2ar) (3.62)

and the corresponding energy spectrum, eigenvalues of the radial part of the Klein-Gordon

equation with a Coulomb potential and scalar potential is deducted by this condition

β − ν − 1 = n′.

Eα=0±
n,` =M

− VsVv

V 2
v + β2 ±

[(
VsVv

V 2
v + β2

)2

− V 2
s − β2

V 2
v + β2

] 1
2

, (3.63)
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or

Eα=0±
n,` =M

− VsVv

V 2
v + (ν + n− l)2 ±

[(
VsVv

V 2
v + (ν + n− l)2

)2

− V 2
s − (ν + n− l)2

V 2
v + (ν + n− l)2

] 1
2

,
(3.64)

where we have introduced the principal quantum number : n = n′ + l + 1.

Now, to determine the correction of the energy levels associated with the disturbed

Hamiltonian W (3.57) due to the anti-de sitter space-time, we use the first-order pertur-

bation theory in the deformation parameter α,

αE(1)
n = α

∫
R0∗
nl (r) (W )R0

nl(r)dr

= α
[
−2ν (ν + 1) < r(0) > +4aβ < r(1) > −2a2 < r(2) >

]
(3.65)

where

< r(m) >

∫
rmR0∗

nl (r)R
0
nl(r)dr. (3.66)

For the calculation of expectation of value of< r(m) >, we take advantage of the properties

(3.60) and (3.61) and a straightforward and long calculation leads to


< r(0) >= 1

< r(1) >=

∫
rR0∗

nl (r)R
0
nl(r)dr = 1

2a(ν+n−l) [3(ν + n− l)2 − ν (ν + 1)]

< r(2) >=

∫
r2R0∗

nl (r)R
0
nl(r)dr = 1

2a2
[5(ν + n− l)2 + 1− 3ν (ν + 1)]

(3.67)

Then the first order of the perturbation theory takes this form

αE(1)
n = α

[
(ν + n− l)2 − ν (ν + 1)− 1

]
=α

{(√
k2 + V 2

s − V 2
v −

1

2
+ n− l

)2

−
(√

k2 + V 2
s − V 2

v −
1

2

)(√
k2 + V 2

s − V 2
v +

1

2

)
− 1

}
(3.68)
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which represents the quantum fluctuations due to the extended uncertainty principle on

(anti) -de sitter space-time, depending on the powers in n2 , explains the phenomenon of

confinement and the expression of the hydrogen atom energy levels is modified as

AdSEα±n,`=M

− VsVv

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n− l
)2

±


 VsVv

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n− l
)2


2

−
V 2
s −

(√
k2 + V 2

s − V 2
v − 1

2 + n− l
)2

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n− l
)2


1
2

,

+α

{(√
k2 + V 2

s − V 2
v −

1

2
+ n− l

)2

−
(√

k2 + V 2
s − V 2

v −
1

2

)(√
k2 + V 2

s − V 2
v +

1

2

)
− 1

}
+O

(
α2
)
.

(3.69)

In this last expression of the spectrum (3.69), we notice that the spectrum energy on anti-

de Sitter is bigger than the energy in ordinary case. Before concluding this paragraph,

we would like to see the influence of space dS on the eigenvalues of the system (α→ −α).

By the same steps, the energy eigenvalues of the system will have the following form

dsEα±n,`=M

− VsVv

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n− l
)2

±


 VsVv

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n− l
)2


2

−
V 2
s −

(√
k2 + V 2

s − V 2
v − 1

2 + n− l
)2

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n− l
)2


1
2

,

-α

{(√
k2 + V 2

s − V 2
v −

1

2
+ n− l

)2

−
(√

k2 + V 2
s − V 2

v −
1

2

)(√
k2 + V 2

s − V 2
v +

1

2

)
− 1

}
+O

(
α2
)
.

(3.70)

In this case, we can see that the energy spectrum (3.70) on the de Sitter space is smaller

than the energy in ordinary case.
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In this contribution, we have investigated the three-dimensional Klein-Gordon oscilla-

tor and the Klein-Gordon equation with a Coulomb plus scalar potential in the context

of quantum deformations for the (anti)- de Sitter algebras. For the 3-dimensionals Klein-

Gordon oscillator, according to the symmetry of the system, we used the adequate ra-

dial representation and some change of variables, the problem has been converted to

a differential equation of type Jacobi polynomials. The energy eigenvalues and their

corresponding eigenfunctions are exactly and analytically obtained . For the case of the

Klein-Gordon equation for hydrogen atom, the problem is complicated and in order to

determine energy spectra, the perturbation theory has been applied to calculate the

correction to the energy levels in the first-order in α. In both problem, we show that the

spectrum energy on anti-de Sitter is bigger than the energy in ordinary case contrariwise

in ds space , the energy spectrum is smaller than the energy in ordinary case.
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Chapitre 4

Reformulation of supersymmetric

Feynman’s approach in the context

of deformed algebras :the EUP

Dirac Oscillator

4.1 Introduction

It is well known that the spin is a fundamental physical quantity in quantum physics

and plays a significant role in various areas of physics, in particular, in the explanation

of the mesoscopic phenomena. In the relativistic case, the exact analytical solutions of

physical models much required, enables us to explore at the same time relativistic and

spin effects, and the relativistic principles require that space-time must be described in

the unified manner. Indeed, Feynman’s path integral formulation for systems with spin

has not yet been definitively achieved due to the discrete nature of the spin and the re-

quirements of relativistic invariance. In fact, path integral uses classical and continuous

concepts such as trajectories whereas the spin is irreducibly of a discrete nature, without

classical equivalent, and to satisfy the relativistic invariance requirements on the other
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hand. To overcome this diffi culty within this framework, some models were presented for

this purpose. For example, the Feynman attempt for the free Dirac electron using the

Poisson stochastic process [118], the Schulman description of the spin of a nonrelativistic

particle by the top model using the three Euler angles [119], and its extension to the

relativistic case [120], the Barut—Zanghi theory for the classical spinning electron related

to zitterbewegung [121], the Bosonic and Fermionic Schwinger model in the related co-

herent state space [122, 123, 124] and the supersymmetric model using the Grassmann

variables for the spin evolution with many developments [125, 126, 127, 128].

Recently, the applicability of this Feynman formulation for the spin system has under-

gone notable development in various domains of physics with different topologies modeled

by deformed algebras. For example, if you take the effects of the gravitational field in

quantum mechanics in presence of the generalized uncertainty principle (GUP), a signi-

ficant number of papers have been published. Citing for instance, the spinning particle

subjected to the action of combined vector and scalar potentials [31, 68] and the Dirac

oscillator [69, 70]. In noncommutative space, the Klein-Gordon and Dirac oscillators [72],

and the harmonic oscillator related to energy-dependent potential [73]. And others im-

portant similar references using path approach as, the Klein-Gordon equation with the

energy dependent linear and Coulomb potentials is treated in [78] and the harmonic os-

cillator and the radial hydrogen atom propagators related to energy-dependent potentials

are analyzed [77].

Our attempt through this work is to set up a path integral formulation to establish

the Green function for the Dirac oscillator problem in the context of another type of

deformation due to the topology of the physical space called the extended uncertainty

principle (EUP) , as an example in the (anti)-de sitter background, the Heisenberg uncer-

tainty principle is modified by introducing corrections proportional to the cosmological

constant.

At the same time, it is important to remember that the Dirac oscillator was introduced

for the first times by [129, 130]. It was the subject of many developments and received
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considerable study in various areas of physics. For example, it appears in quantum optics

[131], in nuclear physics [132], in noncommutative geometry [133] and in graphene physics

[134]. It is used as the confining part of the phenomenological Cornell potential and an

intergroup potential in quantum chromodynamics.

4.2 Brief review of (anti)-de Sitter one-dimensional

background

In this section, before starting the calculations, it is important to expose some use-

ful formulas and notions which will be used later. In this case of one dimensions, the

expressions of the following relations (3.7), (3.8), (3.10) ,(3.12) and (3.14) become :

- For the Anti-de Sitter space,the modified commutation relations leading to the

extended commutation relations is given as [136],

[
X̂, P̂

]
= i
(

1 + αX̂2
)
, (4.1)

where α is a positive deformation parameter proportional to the cosmological constant,

or inversely proportional to the square of the anti-de Sitter radius (α = H2 : H2 is the

Hubble rate). Which lead to the following EUP :

(∆X) (∆P ) > 1

2

(
1 + α (∆X)2) , (4.2)

According to (4.1), the X̂ and P̂ operators in this representation can be realized by

operators x̂ and p̂, as follows :  X̂ = x̂

P̂ = (1 + αx2) p̂
, (4.3)

with x̂ and p̂ satisfy the usual Heisenberg canonical commutation .
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Moreover, for the de-Sitter space, it can be constructed by replacing α −→(−α′ )

where α′ is a positive parameter, we have (∆X) (∆P ) ≥ 1
2

(
1− α′ (∆X)2) .

While the representations of X̂ and P̂ can be thought of as,

X̂ = x; P̂ = −ı
(
1− α′x2

) ∂

∂x
. (4.4)

We note that the momentum operator P̂ is not symmetric in all Hilbert space L2 (R, dx) .

For this, we need to change this space into subspace L2
(
R, dαx = dx

1+αx2

)
.This makes

the modified scalar product of two functions ψ(x) and ϕ(x) in position space basis {|x〉}

as

〈ϕ | ψ〉 =

∫
ϕ∗ (x)ψ (x) dαx. (4.5)

From this modification, we can construct the closure relation as follows

∫ +∞

−∞
dαx |x〉 〈x| = 1, (4.6)

and the corresponding projection relation is

〈x|x′〉 =
(
1 + αx2

)
δ (x− x′) , (4.7)

otherwise

〈x|x′〉 =

∫ +∞

−∞

dp

2π
exp

[
ıp√
α

(
arctan

√
αx− arctan

√
αx′
)]
. (4.8)

Then we use the simplified form

〈
x
∣∣∣P̂ ∣∣∣x′〉 = −

∫ +∞

−∞

pdp

2π
exp

[
ıp√
α

(
arctan

√
αx− arctan

√
αx′
)]
. (4.9)

Assuming no deformation for the time component, we have

〈x0|x′0〉 = δ (x0 − x′0) ,

∫ +∞

−∞
dx0 |x0〉 〈x0| = 1. (4.10)
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In the following section, we concentrate on the explicit calculation of the Green function

for relativistic Dirac oscillators in the context of the EUP, by using the path integral

formalism.

4.3 Dirac oscillator

As it is known, the Dirac oscillator propagator in (1 + 1) dimensions is the causal

Green function S(c) (xb, xa) of the Dirac oscillator equation, which is defined as

(
γµΠ̂bµ−m

)
S(AdS) (xµb , x

µ
a) = −

(
1 + αx2

b

)
δ (xb − xa) δ (tb − ta) , (4.11)

where the components of Π̂µ are expressed as

Π̂0 = P̂0, Π̂1 = P̂ − ımωγ0X̂. (4.12)

Here the operators (X̂, P̂ ) satisfy the commutation relations of the EUP, which is defined

in the relation (4.1). While γµ are the Dirac matrices verify the commutation relation

{γµ, γν} = 2ηµν , with the metric ηµν =diag(1,−1) and µ, ν = 0, 1. These Dirac matrices

can be chosen in terms of Pauli matrices σi as follows :

γ1 = iσ1 and γ0 = σ3. (4.13)

The corresponding solution of Eq. (4.11) is defined as the inverse of the Dirac operator

Od−,

S(AdS) (xb, xa) = −
〈
xb

∣∣∣[Od−]−1
∣∣∣xa〉 = −

〈
xb

∣∣∣Od+ [Od−Od+]−1
∣∣∣xa〉 . (4.14)

Od± are defined as γµΠ̂µ ±m and Od+ represents to the global Dirac projection operator.

Now, following [138], the global representation for the causal Green function is obtained
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by inserting the completeness relation for the space-time states given by Eqs. (4.6) and

(4.10) between the operators Od+ and
[
Od−Od+

]−1
, we get

S(AdS) (xb, xa) =
(
γµΠ̂µ +m

)
b
G(AdS) (xb, xa) . (4.15)

Here G(AdS) (xb, xa) is the global Green function defined as

G(AdS) (xb, xa) = −
〈
xb

∣∣∣[Od−Od+]−1
∣∣∣xa〉 , (4.16)

and introducing the Schwinger proper-time method, the Green function G(g) (xµb , x
µ
a)

becomes

G(AdS) (xµb , x
µ
a) = ı

∫ +∞

0

dλ 〈xµb |exp (ıλH)|xµa〉 . (4.17)

H is the Hamiltonian of the system in question whose quadratic form, and will reduce to

H = Od−Od+ = P̂ 2
0 − P̂ 2 −m2ω2X̂2 −m2 +mωγ0

(
1 + αX̂2

)
, (4.18)

which is associated the case of anti-de Sitter space and their corresponding representation

(4.3). Then by taking into account the properties of the following exponential matrix,

will simplify to :

exp
[
ıλmωγ0

(
1 + αX̂2

)]
= cos

(
λmω

(
1 + αX̂2

))
+ ıγ0 sin

(
λmω

(
1 + αX̂2

))
,

(4.19)

or in another form

exp
[
ıλmωγ0

(
1 + αX̂2

)]
=
∑
s=±1

χsχ
†
s exp

[
ıλsmω

(
1 + αX̂2

)]
, (4.20)
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where χ†s = 1
2

(
1 + s, 1− s

)
. Substituting (4.20) into (4.17), the global Green function

can write as follow

G(AdS) (xµb , x
µ
a) =

∑
s=±1

χsχ
†
sG(AdS) (xµb , x

µ
a) . (4.21)

G(dS) (xµb , x
µ
a) is the new global representation defined by :

G(AdS) (xµb , x
µ
a) = ı

∫ +∞

0

dλ
〈
xµb
∣∣exp

(
−ıλH(s)

)∣∣xµa〉 , (4.22)

and

H(s) = −
[
P̂ 2

0 − P̂ 2 −m2 − (mω)2 X̂2 + smω
(

1 + αX̂2
)]
. (4.23)

At this level, to derive a path integral representation for G(AdS) (xµb , x
µ
a), we follow the stan-

dard discretization method, we write exp
(
−ıλH(s)

)
by
[
exp

(
−ıλH(s)/ (N + 1)

)]N+1
,

and we insert N times the identities of Eqs. (4.6) and (4.10) between each pair of opera-

tors exp
(
−ıελH(s)

)
infinitesimal with ε = 1/ (N + 1) . Then, taking at the end, the limit

N →∞, the expression of G(AdS) (xµb , x
µ
a) becomes as,

G(AdS)
(
xµb , x

µ
a

)
=-¬ lim

N→∞

∫ ∞
0
dλ

N∏
j=1

[∫
dαxjdx0j

]
N+1∏
j=1
〈xj , x0j |

[
1− ıελH(s) +O

(
εn>2

)]
|xj−1x0j−1〉,

(4.24)

where x0 = xa, x00 = x0a, xN+1 = xb and x0N+1 = x0b. Using the relations (4.3) and (4.9)

into (4.24) , and introducing the integral representation follow :

〈xj, x0j | xj−1, x0j−1〉 =

∫
dp0j

2π
exp (ıp0j∆x0j)

∫
dpj
2π

exp

(
ıpj

∆ arctan(
√
αxj)√

α

)
, (4.25)
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we will get the following expression

G(AdS) (xµb , x
µ
a) = −ı lim

N→∞

∫ ∞
0

dλ
N∏
j=1

[∫
dαxjdx0j

]
N+1∏
j=1

[∫
dpj
2π

dp0j

2π

]
× exp

{
ı
N+1∑
j=1

[
pj

∆ arctan(
√
αxj)√

α
+ p0j∆x0j + ελ

(
p2

0j

−p2
j − (mω)2 x2

j −m2 + smω
(
1 + αx2

j

))]}
. (4.26)

The Gaussian integration on the pj, x0j and p0j variables is immediate, we obtain

G(AdS) (xµb , x
µ
a) = −ı lim

N→∞

∫ ∞
0

dλ

∫
dp0

2π
eip0(x0b−x0a)

N∏
j=1

∫
dαxj

N+1∏
j=1

1√
4πıλε

× exp

{
ı
N+1∑
j=1

[
(∆ arctan(

√
αxj))

2

4λεα
+ ελ

(
p2

0 − (mω)2 x2
j −m2 + smω

(
1 + αx2

j

))]}
. (4.27)

It is remarkable that our system converted to the case of the position-dependent effective

mass. Now, in order to make this expression to the ordinary form of the Feynman path

integral with constant mass, we will use the following coordinate transformation method,

y = f (x) , y0 = x0. (4.28)

This new y−variable changes in the interval
]
− π

2
√
α
,+ π

2
√
α

[
according to variables of

x in the interval ]−∞,+∞[ . In order to determine all quantum fluctuations, we per-

form the corrections associated with measure and action terms :
(
dxj/(1 + αx2

j)
)
and(

(∆ arctan (
√
αxj))

2
/4λεα

)
to get the conventional form of Feynman path integral. To

determine the appropriate corrections and avoid any ambiguities, we discretize the mea-

sure and choose for any δ-point discretization interval (x(δ) = δx+(1− δ)x−1) according

to the technique used in [69]. So after straightforward calculations, we obtain the total

quantum correction with two approaches, Kleinert method [139] and standard method

[140]

CT
Kleinert = 2iελ

m2ω2

α

(
1 + tan2(

√
αy)
)
δ (2δ − 1) , (4.29)
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and

CT
Khand = 2iελ

m2ω2

α

[(
1− 8δ + 8δ2

)
tan2(

√
αy)
]
. (4.30)

In order to obtain the exact results we should give the two values of δ, when using

Kleinert method [139] we will find δ = 0, 1/2, and when using a standard method [140]

we get δ = 1
2

(
1± 1/

√
2
)
. These points are the same obtained in one dimension case with

generalized uncertainty principle [69]. Under these considerations we will simplify CT to

zero, and the amplitude G(AdS) (yµb , y
µ
a ) becomes as follows :

G(AdS) (yµb , y
µ
a ) = −ı

∫ ∞
0

dλ
N∏
j=1

∫
dp0

2π
eip0(y0b−y0a)

N+1∏
j=1

eıλ[p
2
0−m2+smω]

×K(PT ) (yµb , y
µ
a ) . (4.31)

Here K(PT ) (yµb , y
µ
a ) is identical the propagator to the standard problem of the Poschl—

Teller potential defined by

K(PT )
(
yµb , y

µ
a

)
= lim
N→∞

N∏
j=1

∫
dyj

N+1∏
j=1

1√
4πıλε

exp

{
ı

[
(∆yj)

2

4λε
− ελ

(
m2ω2

α
− smω

)
tan2

(√
αyj
)]}

.

(4.32)

While in the case of de-Sitter space we replace α by (−α), and it is given the standard

problem of the modified Poschl-Teller potential.

4.3.1 Calculation of the propagator

The path integral of y (tj) in Eq. (4.32) (i.e., anti-de Sitter space) is exactly the

propagator associated with the Poschl-Teller potential. Which is solved exactly in Refs.

[140, 141], and equals

G(AdS) (yµb , y
µ
a ) = −ı lim

N→∞

∫ ∞
0

dλ

∫
dp0

2π
eip0(y0b−y0a) eıλ[p

2
0−m2+smω]

×
[ ∞∑
n=0

e−ıλE
(PT )
n,s Ψ(PT )

n,s (yb)
(
Ψ(PT )
n,s

)∗
(ya)

]
, (4.33)
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with E
(PT )
n,s is the energy spectrum associated to the Poschl-Teller potential, which is

defined as

E(PT )
n,s = α

(
n2 + (2n+ 1) ηs

)
, (4.34)

and ψ(PT )
n,s (y) are corresponding the wave functions and given by

ψ(PT )
n,s (y) = Γ (ηs)

√
22ηs−1n! (n+ ηs)

√
α

πΓ (n+ 2ηs)

(
cos
(√

αy
))ηs Cηs

n

(
sin
(√

αy
))
, (4.35)

where

ηs =
1− s

2
+
mω

α
. (4.36)

ηs is parameter determined according the condition of the extended uncertainty principle,

and the characteristic length of oscillator, retaining the solution associated with mω
α
> 1,

the values η+ = mω
α
, η− = 1 + mω

α
are accepted. While the other negatives values are

rejected. Substituting (4.33) into (4.21), the propagator becomes as :

G(AdS) (yµb , y
µ
a ) = −ı

∫ ∞
0

dλ

∫
dp0

2π
eip0(y0b−y0a)

∑
n

∑
s=±1

χsχ
†
se
ıλ
[
p20−m2+smω−E(PT )n,s

]

×
[
(Γ (ηs))

2 22ηs−1n! (n+ ηs)
√
α

πΓ (n+ 2ηs)

(
cos
(√

αyb
))ηs Cηs

n

(
sin
(√

αyb
))

×
(
cos
(√

αya
))ηs Cηs

n

(
sin
(√

αya
))]

. (4.37)

An integration over λ to give this expression

G(AdS) (yµb , y
µ
a ) = −ı

∑
n

∑
s=±1

(Γ (ηs))
2 22ηs−1n! (n+ ηs)

√
α

πΓ (n+ 2ηs)

∫
dp0

2π

eip0(y0b−y0a)

p2
0 − En,s

χsχ
†
s

×
[(

cos
(√

αyb
))ηs Cηs

n

(
sin
(√

αyb
)) (

cos
(√

αya
))ηs Cηs

n

(
sin
(√

αya
))]

, (4.38)

with

En,s (p0) = m2 − smω + E(PT )
n,s . (4.39)
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The above equation (4.38) lacks the integration over energy p0. This can be converted to

a complex integration along the special contour C, and then using the residue theorem,

we have :

∮ dp0

2πi

eip0(y0b−y0a)

p2
0 − En,s

f (p0) =
n∑
k=1

Res
(
e−iE(tb−ta)

E2−En,s f (E) , Ek

)
e−iEk(y0b−y0a)

=
∑
ε=±1

f
(
E

(ε)
n,s

)
2εω

(AdS)
n,s

e−iE
(ε)
n,s(y0b−y0a)Θ (ε (y0b − y0a)) , (4.40)

where ε = ±1 and Θ (x) is the Heaviside function. This gives the following poles :

E(ε)
n,s = εω(AdS)

n,s = ±
√
m2 − smω + α (n2 + (2n+ 1) ηs). (4.41)

Using the residue theorem on global Green function expression defined in Eq. (4.38). The

integrations over p0 are carried, and becomes as

G(AdS) (yµb , y
µ
a ) = −ı

∑
ε=±1

∑
s=±1

∑
n

(Γ (ηs))
2 22ηs−1n! (n+ ηs)

√
α

πΓ (n+ 2ηs)

×
{
e−iεω

(AdS)
n,s (y0b−y0a)

2εω
(AdS)
n,s

Θ (ε (y0b − y0a))χsχ
†
s

(
cos
(√

αyb
))ηs Cηs

n

(
sin
(√

αyb
))

×
[(

cos
(√

αya
))ηs Cηs

n

(
sin
(√

αya
))]

. (4.42)

Furthermore, we can get the global Green function G(dS) (yµb , y
µ
a ) in de-Sitter Snyder case,

just by changing α by (−α) with retaining the term of ηs.

4.3.2 Spectral energies and Spinorial wave functions

To obtain the exact solutions for the wave functions and spectral energies for the

system governed by the Dirac equation, it must bring the corresponding spectral decom-

position of Dirac oscillator in (1+1) dimension in the context of the EUP by the act
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operator (γνΠ̂ν +m)b on Eq. (4.42). This will be simplified as

S(AdS) (xb, xa) = −ı
[
ıσ3 ∂

∂y0b

+ σ1

(
∂

∂yb
+ σ3mω√

α
tan
(√

αyb
))

+m

]
×
∑
s=±1

∑
n

{
(Γ (ηs))

2 22ηs−1n! (n+ ηs)
√
α

πΓ (n+ 2ηs)

e−isω
(AdS)
n,s (y0b−y0a)

2ω
(AdS)
n,s

Θ (s (y0b − y0a))χsχ
†
s

×
[(

cos
(√

αyb
))ηs Cηs

n

(
sin
(√

αyb
)) (

cos
(√

αya
))ηs Cηs

n

(
sin
(√

αya
))]}

+

{
− (Γ (ηs))

2 22ηs−1n! (n+ ηs)
√
α

πΓ (n+ 2ηs)

e+isω
(AdS)
n,s (y0b−y0a)

2ω
(AdS)
n,s

Θ (−s ((y0b − y0a)))χsχ
†
s

×
[(

cos
(√

αyb
))ηs Cηs

n

(
sin
(√

αyb
)) (

cos
(√

αya
))ηs Cηs

n

(
sin
(√

αya
))]}

. (4.43)

With some known relationships in algebra matrices for Dirac, we have

σ3χs = sχs, σ1χs = χ−s and σ2χs = isχ−s, (4.44)

and with helping of Gegenbauer’s polynomials properties [142],
d
du
Cη
n (u) = 2ηCη+1

n−1 (u) ,

nCη
n(u) = (2η + n− 1)uCη

n−1 (u)− 2η(1− u2)Cη+1
n−2 (u) ,

(2η + n)Cη
n(u) = 2η

[
Cη+1
n (u)− uCη+1

n−1 (u)
]
,

(4.45)
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we can write the Green function through a straightforward calculation, as follows :

S(AdS) (xb, xa)=-¬
∑
s=±1

∑
n

(Γ (ηs))
2 22ηs−1n! (n+ ηs)

√
α

πΓ (n+ 2ηs)

(
cos
(√

αyb
))ηs (cos

(√
αya
))ηs

×
{
e−isω

(AdS)
n,s (y0b−y0a)

2ω
(AdS)
n,s

Θ (s (y0b − y0a))
[(
ω(dS)
n,s +m

)
Cηs
n (ξb)C

ηs
n (ξa)χsχ

†
s

+
√
α

[
−
(

1− s
2

)(
1 +

mω

α

)
tan

(√
αyb
)
C
ηs
n (ξb) + 2ηs cos

(√
αyb
)
C
ηs+1
n−1 (ξb)

]
C
ηs
n (ξa)χ−sχ

†
s

]}

-

{
e+isω

(AdS)
n,s (y0b−y0a)

2ω
(AdS)
n,s

Θ (−s (y0b − y0a))
[(
−ω(dS)

n,s +m
)
Cηs
n (ξb)C

ηs
n (ξa)χsχ

†
s

+
√
α

[
−
(

1− s
2

)(
1 +

mω

α

)
tan

(√
αyb
)
C
ηs
n (ξb) + 2ηs cos

(√
αyb
)
C
ηs+1
n−1 (ξb)

]
C
ηs
n (ξa)χ−sχ

†
s

]}
.

(4.46)

Now, to obtain the spectral energies and corresponding eigenfunctions, we must unify the

expression of energy E(ε)
n,s. Which leads us to make the following changes on the second

term in the Green function, which are multiplied by Θ (−s (y0b − y0a))

s→ s′ = −s,

n→ n′ = n− s,

ηs → ηs′ = ηs + s. (4.47)
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After these changes, we can write

S(AdS) (xb, xa) = −ı
∑
s=±1

∑
n

(Γ (ηs))
2 22ηs−1n! (n+ ηs)

√
α

πΓ (n+ 2ηs)

×
(
cos
(√

αyb
))ηs (cos

(√
αya
))ηs e−isω(dS)n,s (y0b−y0a)

2ω
(dS)
n,s

Θ (s (y0b − y0a))

×
{[(

ω(dS)
n,s +m

)
Cηs
n (ξb)C

ηs
n (ξa)χsχ

†
s+

+
√
α

[
−
(

1− s
2

)(
1 +

mω

α

)
tan
(√

αyb
)
Cηs
n (ξb)

+2

(
1− s

2
+
mω

α

)
cos
(√

αyb
)
C
ηs+1
n−1 (ξb)

]
Cηs
n (ξa)χ−sχ

†
s

}
−
{[(
−ω(dS)

n,s +m
)
C
ηs+s
n−s (ξb)C

ηs+s
n−s (ξa)χ−sχ

†
−s

+
√
α

[
−
(

1 + s

2

)(
1 +

mω

α

)
tan
(√

αyb
)
C
ηs+s
n−s (ξb)

+2

(
1 + s

2
+
mω

α

)
cos
(√

αyb
)
C
ηs+s+1
n−s−1 (ξb)

]
C
ηs+s
n−s (ξa)χsχ

†
−s

}
. (4.48)

From above expression, we can rewrite the causal Green’s function as follows :

S(AdS) (xb, xa) = −ı
∑
s=±1

∑
n

exp
(
−ısω(AdS)

n,s (y0b − y0a)
)

Θ (s (y0b − y0a))

×
[

Γ (ηs)
√

22ηs−1n!(n+ηs)
√
α

πΓ(n+2ηs)

√
m+ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs
n (ub)ϑ

ηs
b χs

+ı
√
αΓ (ηs + s)

√
22(ηs+s)−1(n−s)!(n+ηs)

√
α

πΓ(n+2ηs+s)

√
m−ω(AdS)n,s

2ω
(AdS)
n,s

C
ηs+s
n−s (ub)ϑ

ηs+s
b χ−s

]

×
[

Γ (ηs)
√

22ηs−1n!(n+ηs)
√
α

πΓ(n+2ηs)

√
m+ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs
n (ua)ϑ

ηs
a χ
†
s

+ı
√
αΓ (ηs + s)

√
22(ηs+s)−1(n−s)!(n+ηs)

√
α

πΓ(n+2ηs+s)

√
m−ω(AdS)n,s

2ω
(AdS)
n,s

C
ηs+s
n−s (ua)ϑ

ηs+s
a χ†−s

]
.

(4.49)

In Eq. (4.49) we have two types of propagation, one with positive energy (+EAnti
n,α ) pro-

pagating to the future and the other with negative energy (−EAnti
n,α ) propagating to the
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past. Consequently, we obtain this result in the former variable,

S(α) (xb, xa, tb − ta) = −
∑
s=±1

∑
n

 Θ (tb − ta) Ψ
(α)+
n (xb) Ψ̄

(α)+
n (xa) e

−ıEAntin,α,s(tb−ta)+

Θ (− (tb − ta)) Ψ
(α)−
n (xb) Ψ̄

(α)−
n (xa) e

ıEAntin,α,s(tb−ta)

 .
(4.50)

This formula is the spectral decomposition of the Green function, within which we extract

the wave functions

Ψ(AdS)s
n (x) = Γ (ηs)

√
22ηs−1n!(n+ηs)

√
α

πΓ(n+2ηs)

√
m+ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs
n (ub)ϑ

ηs
b χs

+ı
√
αΓ (ηs + s)

√
22(ηs+s)−1(n−s)!(n+ηs)

√
α

πΓ(n+2ηs+s)

√
m−ω(AdS)n,s

2ω
(AdS)
n,s

C
ηs+s
n−s (ub)ϑ

ηs+s
b χ−s, (4.51)

and we can return to the old variables by means of the following relations

u = sin
(
arctan

(√
αx
))
, ϑ = cos

(
arctan

(√
αx
))
. (4.52)

Where the corresponding spectral energies are

E(AdS)±
n,α,s = ±

√
m2 + 2mω

(
n+

1− s
2

)
+ α

(
n2 +

1− s
2

(2n+ 1)

)
. (4.53)

The dependence on n2 corresponding to α effect of the modification of the Heisenberg

algebra, due to the EUP, which is a characteristic of the confinement phenomena. With

various the values of α and with spin up (s = 1), we can plot the appropriate curves

of positive and negative energies in Fig. 1. We clearly notice that the energy E(AdS)±
n,α,s is

presented as a function of n for several values of α, the spectrum is expanded, E(AdS)+
n,α,s
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is an increasing ( E(AdS)−
n,α,s is decreasing ) monotonous function for arbitrary α.
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Fig. 9. E(AdS)n,s=1 is the energy spectrum versus n for several values of α

Next, we want to check the current density (ρ, Jx) for (1 + 1)−dimensional Dirac

oscillator in the context of the EUP. Activating the positive use of this method (path

integral formalism) for normalized the wave functions in the context of the extended

uncertainty principle. As we know the current density are defined as

ρ =

∫
dλx(Ψ(AdS)s

n (x))†Ψ((AdS))s
n (x) , (4.54)

Jx =

∫
dλxΨ̄((AdS))s

n (x) γ1Ψ((AdS))s
n (x) . (4.55)

After straightforward calculation, we can confirm the current density of Dirac oscillator

in (1+1) dimension in the context of the EUP are given as

ρ = 1, (4.56)
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Jx =

∫
dλx(Ψ(AdS)s

n (x))†σ2Ψ(AdS)s
n (x) = 0. (4.57)

Which approves the same results in usual case of the Dirac oscillator in (1+1) dimension

(α = 0).

4.3.3 de Sitter Snyder spaces

In the case of de-Sitter Snyder space, we will follow the same calculation procedures

as presented in the previous section. Which can be constructed by replacing α by (−α′)

in Eq. (4.53). The spectral energies E(dS)±
n,α′,s are given as :

E
(dS)±
n,α′,s = ±

√
m2 + 2mω

(
n+

1− s
2

)
− α′

(
n2 +

1− s
2

(2n+ 1)

)
. (4.58)

We note that when the quantum number n is large, the spectral energies would have no

physical meaning. This indicates that one needs to impose an upper bound on the values

of n. From these last expressions of the spectral energies E(dS)±
n,α′,s , we can determine this

limit by using
E

(dS)
n,α′,s

dn
|N= 0, (4.59)
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where N implies to
(
mω
α′ + 1−s

2α′

)
, and E(dS)+

n,α′,s is decreasing (while E
(dS)−
n,α′,s is an increasing

) monotonous function for arbitrary α′. These cases are illustrated by the following curve
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Fig. 10. E(dS)n,s=1 is the energy spectrum versus n for several values of α′

While the corresponding wave functions are given from Eq. (4.51) by substituting

(α→ −α′), and which leads to

u = sinh
(

tanh−1
(√

α′x
))

, ϑ = cosh
(

tanh−1
(√

α′x
))

. (4.60)

In the following subsections, we will present the special and important cases to validate

these our calculations.
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Without deformation case

In order to obtain the ordinary case, we put the limit α→ 0, ηs = η →∞, by using

[142]

lim
λ→∞

λ−
n
2C

λ
2
n

(
x

√
2

λ

)
=

2−
n
2

n!
Hn(x), lim

λ→∞

Γ(λ+ a)

Γ(λ)
e−a lnλ = 1, (4.61)

the doubling formula

Γ(2x) =
22x−1

√
π

Γ(x)Γ

(
x+

1

2

)
, (4.62)

and

lim
α→0,η→∞

(
1 + αx2

)η
= exp

(
−mω

2
x2
)
. (4.63)

From the above limits, we can obtain the wave functions and energy spectrum, and they

are given respectively

lim
α−→0

Ψ(α)s
n (x) = Ψ(α=0)s

n (x) =

(
f

(α=0)s
n (x)

g
(α=0)s
n (x)

)
,

with the following components,

f (α=0)s
n (x) =

√√√√√mω/π
(
E

(α=0)
n,s +m

)
2n+1n!E

(α=0)
n,s

exp
(
−mω

2
x2
)
Hn

(√
mωx

)
. (4.64)

g(α=0)s
n (x) = −

√√√√√mω/π
(
E

(α=0)
n,s −m

)
2n(n− s)!E(α=0)

n,s

exp
(
−mω

2
x2
)
Hn−s

(√
mωx

)
, (4.65)

and

E
(dS)±
n,α′=0,s = ±

√
m2 + 2mω

(
n+

1− s
2

)
. (4.66)

We deduct exactly the same result without deformed uncertainty relation which coincide

with those obtained from the usual Dirac oscillator in (1 + 1) dimensions [128].
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Non -relativistic limit

To obtain the energy level in non relativistic limit case for the one-dimensional Dirac

oscillator in anti-de Sitter spaces system E
(AdS)
NR,s , we put E

(AdS)
n,α,s = m+E

(AdS)
NR,s with m�

E
(AdS)
NR,s and using the Taylor development of (4.53) in the second order approximation,we

find :

E
(AdS)+
NR,s ≈ ω

(
n+

1− s
2

)
+

α

2m

(
n2 +

1− s
2

(2n+ 1)

)
+

1

2

[
ω

(
n+

1− s
2

)
+

α

2m

(
n2 +

1− s
2

(2n+ 1)

)]2

, (4.67)

with m represents the rest energy of the particle, the second and third terms represent,

respectively, the energy of the non-relativistic oscillator of frequency ω and the relativistic

correction both in the context of the extended uncertainty principle.

This implies that the corresponding eigenvalues associated with this energy level in

the non-relativistic limit are given by

Ψ
(AdS)+
NR,s (x) = Γ (ηs)

√
22ηs−1n!(n+ηs)

√
α

πΓ(n+2ηs)
Cηs
n (ub)ϑ

ηs
b χs, (4.68)

where we have used the following limits :

lim
m�

√
m+ω

(AdS)+
n,s

2ω
(AdS)+
n,s

≈ 1, lim
m�

√
m−ω(AdS)+n,s

2ω
(AdS)+
n,s

≈ 0. (4.69)

In this contribution, we have constructed the path integral representation for the

Green function for the Dirac oscillator in (1+1) dimension in the EUP. Which indicates

to presence a nonzero minimal uncertainty in momentum. We obtained the exact spectral

energies and corresponding eigenfunctions expressed in terms of Gegenbauer polynomials.

The energy levels show a dependence on n2 corresponding to α effect of the modification

of the Heisenberg algebra, due to the EUP, which is a characteristic of the confinement

phenomena as in the case of non-commutative geometry. As a result, for a fixed value of
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n, the energy E(AdS)
n,α,+ increases monotonically with the increase of the EUP parameter α.

We have also deduced special cases :

1) de-Sitter spaces case by replacing α −→ −α′, we note that the corresponding

energy spectrum E
(dS)
n,α′,s would have an unphysical behavior when the quantum number

n is large. This indicates that one needs to impose an upper bound on the values of n

and we can also see that the energy spectrum on the de Sitter space is smaller than the

energy in ordinary quantum mechanics.

2) absence of deformation case by taking the limit (α −→ 0), we obtain the usual

Heisenberg algebra. The same result without deformed uncertainty relation which has

been done by Rekioua et al [128]. A generalization of this work in the presence of an

electromagnetic field that requires a thorough discussion is currently under consideration,

and will be the subject of another study. At the end of this paper, it is worth mentioning

that the results obtained make it possible to detect the effects due to the large scale

curvature of space-time on some physical systems : for example the confinement of quarks

in quantum chromodynamics (QCD) and the description of certain properties of electrons

in graphene. We recall that the dynamics of these two physical examples cited is modeled

by the relativistic Dirac oscillator , as it is known in the literature [134, 137].
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Chapitre 5

General conclusion

This thesis essentially consists of two main parts :

- In the first part, we have established an exact and explicit solution of some relativistic

problems in the context of deformed algebras via the direct method by solving the

equations.

By using the new type of the extended uncertainty principle associated to the displa-

cement operator method, several applications were presented such as :

The Klein-Gordon particle confined in a one dimensional box, the Klein Gordon

equation in the presence of the linear vector and scalar potentials , the Klein Gordon

in mixed Coulomb-type vector and scalar potentials and the Klein-Gordon and Dirac

oscillators subject to a uniform electric field. In these cases, the exact analytical solutions

are determined and the wave functions and the exact corresponding energy spectrum

are extracted. It is remarkable that this deformation influences the results obtained,

the expressions of energy spectrum vary with all the power of n , which explain the

confinement phenomenon, it is also mentioned that the bound states are limited and

the expressions of energy are not defined for large values of n. Consequently, we need to

impose an upper limit on the allowed values of n. For the two last cases the Klein-Gordon

and Dirac oscillators subject to a uniform electric field, we noticed that the expression of

the energy spectrum contains corrections of all orders of (εγ)2, which could be interpreted
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like the Stark effect in the extended uncertainty principle deformation framework and

related to the exact contribution to the confinement phenomenon .

In addition, we have treated the three-dimensional Klein-Gordon oscillator and the

Klein-Gordon equation with a Coulomb plus scalar potential in the context of quantum

deformations for the (anti)- de Sitter algebras . The energy eigenvalues and their corres-

ponding eigenfunctions are exactly and analytically obtained . In both problem, we show

that the spectrum energy on anti-de Sitter is bigger than the energy in ordinary case

contrariwise in ds space , the energy spectrum is smaller than the energy in ordinary

case.

-The second part is devoted to the elaboration of the formalism of supersymmetric

path integrals in the context of deformed algebras. The Dirac oscillator in the extended

uncertainty principle is exposed as being a good application. To explicitly evaluate the

propagator associated with the problem, the global Dirac projection operator and the

Schwinger proper-time method are introduced. To determine the appropriate corrections

and avoid any ambiguities, we discretize the measure for any δ-point discretization inter-

val. By using appropriate transformations and evaluating some Gaussian integrations,

our system converted to the case of the position-dependent effective mass. To obtain the

ordinary expression for the constant mass case, using a suitable coordinate transformation

and by straightforward calculation the propagator will be converted to the Poschl-Teller

case. Finally, the energy spectrum and the corresponding wave functions are exactly de-

termined and are agree exactly with those in the literature. Also the limiting cases are

considered .
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Abstract In the context of new type of the extended uncertainty principle using the displacement operator
method, we present an exact solution of some problems such as: the Klein–Gordon particle confined in a one
dimensional box, the scalar particle with linear vector and scalar potentials and the case of inversely linear
vector and scalar potentials of Coulomb-type. The expressions of bound state energies and the associated wave
functions are exactly determined for these three cases.

1 Introduction

During the last years, there has been growing interest in studying the dynamics of quantum particles in the
framework of deformed algebras. We quote some examples, the description of the low energy excitations
of graphene and the Fermi velocity , is based on a deformation of the Heisenberg algebra which makes the
commutator of momenta proportional to the pseudo-spin [1]. The dynamics of systems with variable masses
in semiconductor heterostructures are formulated by deformed quadratic algebra [2], the thermostatistics of
q-deformed bosons and fermions [3], the q-deformed quark fields [4], the motion of a 3He impurity atom in the
Bose liquid [5], in the context of quantum gravity, namely if we takes into account the effects of the gravitational
field in order to incorporate gravity into quantum mechanics, the usual Heisenberg uncertainty principle should
be replaced by the so-called generalized uncertainty principle (GUP) [6–12] and it is characterized by the
existence of a minimal length scale in the order of the Planck length. The several research fields in which
the concept of minimal length plays an essential role are, the string theory [13], non-commutative geometries
[14], black hole physics [15] and the quantum gravity [16]. Recently, in this sense, this generalized uncertainty
principle (GUP) has undergone notable development and a significant number papers have been published in
diverse physics area [17–25]

In addition, if we consider the quantum effects due to the topology of the physical space, the modified
uncertainty principle associated called the extended uncertainty principle (EUP) [26–31]. For example in these
research works, Mignemi showed that in a (Anti) de Sitter background the Heisenberg uncertainty principle
modified by introducing corrections proportional to the cosmological constant ∧ = −3λ2, where λ2 ≺ 0 for
de Sitter space-time, and λ2 � 0 for anti-de Sitter space-time. The introduction of this idea of (EUP) has drawn
great attention and many papers have been appeared in the literature to address the effects of the extended
commutation relations [32–42]
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Furthermore, in the past few years, another new type of EUP with a minimum momentum dispersion [43],
has been introduced by the action of the translation operator in a space with a diagonal metric for the purpose
of describing the motion of a quantum particle in the curved space .

Tγ (δx) | x >=| x + δx + γ xδx > (1)

where δx is an infinitesimal displacement and the parameter γ is the inverse of a characteristic length that
determines the mixing between the displacement and the original position state [44–47]. This translation is
non-additive, can be written as to first order in δx

Tγ (δx) = 1 − iδx

h̄
Pγ . (2)

where Pγ is a generalized momentum operator. This property changes the commutation relation for position
and momentum as

[
x̂, Pγ

] = i h̄ (1 + γ x) , (3)

and leads a generalized uncertainty relation

�x�Pγ � h̄

2
(1 + γ 〈x〉) . (4)

The generalized momentum operator and the operators of position satisfying Eq. (3) can be represented in
Hermitian form by [44–47]

Pγ = −i h̄Dγ and x̂ = x, (5)

with

Dγ =
[
(1 + γ x)

d

dx
+ γ

2

]
(6)

On the other hand, the nonadditive operator corresponds to the infinitesimal generator of the q-exponential
function [48,49]

expq (x) ≡ [1 + (1 − q) x]
1

1−q , (7)

where x is a dimensionless variable, and γ ≡ (1−q). This last Eq. (7) represents a fundamental mathematical
definition for the generalized thermostatistics of Tsallis and its applications [50–55]. For this purpose, some
problems were solved within this framework of the translation operator for a quantum system, for example,
the study of particle under a null potential confined in a square well in [44–47], the solution of the quantum
harmonic oscillator is given by [56,57] where the problem converted to the Morse potential case. A new
Hermitian kinetic energy operator for the description of position-dependent effective mass systems void of
the ordering ambiguity hassle and similar with three different ordering of the Von Roos operator is proposed
by [58]. In [59], Arda used this displacement operator to study the particle moving in an inverse square plus
Coulomb-like potential and it is similar the Rosen-Morse potential in usual position space.

The main purpose of this paper is to solve analytically and exactly the Klein–Gordon equation in the context
of this new type of EUP for some important applications:

– Klein Gordon particle in a box model
– Klein Gordon equation with linear vector and scalar potentials
– Klein Gordon equation with inversely linear vector and scalar potentials of Coulomb-type.

To the best of our knowledge, no relativistic problem has been studied within this framework of the
translation operator. Consequently, our attempt is to approach this new type of EUP for a relativistic problem
and to see the influence of this deformation on the properties of the systems.
The rest of the paper is organized as follows. In Sect. 2, we give the exact solution of Klein–Gordon particle
confined in a one dimensional box. The scalar particle with linear vector and scalar potentials is treated in
Sect. 3. The case of Coulomb-type vector and scalar potentials has been examined in Sect. 4.
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2 The Klein–Gordon Particle in One-Dimensional Box

We consider a Klein–Gordon (K–G) particle without spin of mass m and charge q confined to the following
one dimensional box:

qV (x) =
{

0, 0 ≤ x ≤ L
∞, elsewhere . (8)

So, in the context of this new type of EUP using the displacement operator method, the stationary Klein–
Gordon equation in the presence of a potential V (x) in one dimensional space is defined by : we put (�
= c = 1) [

(E − qV (x))2 − P2
γ − m2

]
φ (x) = 0. (9)

where Pγ is given by (5) . Moreover, the continuity equation can be deduced from the modified Klein–Gordon
equation (9) and its conjugate by this relation

∂ρ

∂t
+ Dγ Jγ = 0. (10)

with

ρ = i

2m

(
	∗∂t	 − 	∂t	

∗) , (11)

and Jγ defines the modified current density

Jγ = − i

2m

(
	∗ (1 + γ x)

d	

dx
− 	 (1 + γ x)

d	∗

dx

)
, (12)

Now, in order to solve the Eq. (9) in one dimensional box, for 0 ≤ x ≤ L , using the representation (5) and
the following transformation:

u = (1 + γ x), (13)

we obtain: (
u2 d2

du2 + 2u
d

du
+ 1

4
+ E2 − m2

γ 2

)
φ (u) = 0, (14)

To transform this last differential equation homogeneous to another one with constant coefficients, using the
following change z = ln u, we get as a result :

(
d2

dz2 + d

dz
+ 1

4
+ E2 − m2

γ 2

)
φ (z) = 0, (15)

whose the solution in term on the old variable is given by

φ (x) = N√
(1 + γ x)

sin

(√
E2 − m2 ln (1 + γ x)

γ
+ ξ

)
. (16)

where N is a normalization constant. Using the boundary conditions ϕ (0) = ϕ (L) = 0, the solution of (14)
will take the following form

φ (x) = N√
(1 + γ x)

sin

(√
E2
n − m2 ln (1 + γ x)

γ

)
. (17)

with √
E2
n − m2 ln (1 + γ L)

γ
= nπ, (18)

This gives rise to the quantized energy

E±
n = ±

√

m2 + n2π2γ 2

ln2 (1 + γ L)
. (19)
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Now if we consider γ = 0 absence of deformation, taking γ → 0 in (19) we find,

E± = ±
√

m2 + n2π2

L2 . (20)

which is the result of the ordinary case [60].
The normalization constant N can be obtained from the normalization condition of the 	n , follows from

the modified definition of the scalar product for Klein Gordon equation :

+∞∫

−∞

i

2m

(
	∗

n (x)
∂	n (x)

∂t
− 	n (x)

∂	∗
n (x)

∂t

)
= 1, (21)

and by a direct calculation, we get

N =
√

2γm

En ln (1 + γ L)
. (22)

3 The Klein Gordon Equation with Mixed Scalar and Vector Linear Potentials

The dynamic of Klein–Gordon particle in (1 + 1) dimension in the presence of a scalar potential S(x) and a
vector potential V (x) in the framework of of new type of EUP is governed by this stationary equation :

[
P2

γ + (m + S(x))2 − (E − qV (x))2
]
ψ (x) (23)

where the vector and the scalar potential are chosen linear as follows

qV (x) = V0x

S(x) = S0x . (24)

and we take S2
0 − V 2

0 > 0 so as to avoid complex eigenvalues. We replace S(x) and V (x) and using the
representation (5) and (24), the Eq. (23) becomes:

[
d2

du2 + 2

u

d

du
+ A

u2 + B

u
− C2

]
ψ (u) = 0 (25)

where we have used the same transformation (13) and this notation

A = V 2
0 − S2

0

γ 4 + 2(EV0 + mS0)

γ 3 + E2 − m2

γ 2 + 1

4
,

B = 2(S2
0 − V 2

0 )

γ 4 − 2(EV0 + mS0)

γ 3 ,

C =
√
S2

0 − V 2
0

γ 2 , (26)

To simplify the Eq. (25), we introduce,

ψ(u) = uσ exp(−Cu)�(u),

u → y = 2Cu, (27)

so, the differential equation will reduce to the equation of the associated Laguerre polynomials Lk
n (y),

[
y
d2

dy2 + [(2σ + 2) − y]
d

dy
+ 1

y
[σ(σ − 1) + 2σ + A] + 1

2C
[B − 2C − 2Cσ ]

]
�(y) = 0. (28)
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by imposing the constraint,
σ(σ − 1) + 2σ + A = 0, (29)

to eliminate the coefficient proportional to 1
y , and

{
1

2C [B − 2C − 2Cσ ] = n,

2σ + 2 = k + 1.
(30)

The relation (29) leads to the following expressions for σ by

σ± = −1

2
± 1

γ

√(
m + E − (S0 − V0)

γ

)(
m − E − (S0 + V0)

γ

)
(31)

Among these two solutions, the physically acceptable one is only σ+. To extract the energy spectrum, we
substitute the expression (31) into the first relation of (30), then it is straightforward to show that

E± = −mV0

S0
− γ

V0

√
S2

0 − V 2
0

S2
0

(
n + 1

2

)
± S2

0 − V 2
0

S2
0

√√√
√√−γ 2

(
n + 1

2

)2

− γ (2n + 1)mS0√
S2

0 − V 2
0

+ (2n + 1) S2
0√

S2
0 − V 2

0

,

(32)
It is remarkable that the expression of the energy spectrum is a dependent function of the deformation
parameter γ , γ 2 and with powers in n, n2 which explains the phenomenon of confinement due to the new type
of extended uncertainty principle. Moreover , for large values of n, the second term is not defined of E±. In
order to ensure the positivity of the square root of energy, one must impose an upper bound on the allowed
values of n.

Solving the Eq. (23) along with (27), (28) and (31), we obtain the final form of the wave function in the
former variable x as

ψ(x) = Nnλ (1 + γ x)
− 1

2 + 1
γ

√(
m+E− (S0−V0)

γ

)(
m−E− (S0+V0)

γ

)

exp

⎧
⎨

⎩
−
√

(S2
0 − V 2

0 )

γ 2 (1 + γ x)

⎫
⎬

⎭

L
2
γ

√(
m+E− (S0−V0)

γ

)(
m−E− (S0+V0)

γ

)

n

⎛

⎝
2
√

(S2
0 − V 2

0 )

γ 2 (1 + γ x)

⎞

⎠ , (33)

and Nnr is a normalization constant.
Now if we consider γ = 0 absence of deformation, we replace γ = 0 in (32) we find,

E± = −mV0

S0
±
(
S2

0 − V 2
0

) 3
4

S0

√
(2n + 1) (34)

which is the result of the ordinary case [61,62].

4 The Klein Gordon Equation with Mixed Scalar and Vector Inversely Linear Potentials

In this case we choose the vector and the scalar potential inversely linear of Coulomb-type as follows

qV (x) = V0

| x |
S(x) = S0

| x | , (35)

Using the transformation u = 1 + γ | x | and the representation (5), for x > 0, the stationary Klein–Gordon
equation in (1 + 1) dimension in the framework of of new type of EUP (23) can be written as :

[
d2

du2 + 2

u

d

du
+ a1

u2 + a2

u(1 − u)
− a2

3

(1 − u)2

]

	(u) = 0 (36)
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where we replaced S(x) and V (x) by their expressions (35) and this notation,

a1 = 2(EV0 + mS0)

γ
− (S2

0 − V 2
0 ) + (E2 − m2)

γ 2 + 1

4
,

a2 = 2(EV0 + mS0)

γ
− 2(S2

0 − V 2
0 ),

a3 =
√
S2

0 − V 2
0 ) , S0 > V0 (37)

In addition, we note that this Eq. (36) possesses three singular points 0, 1, ∞. By means of the substitution
	(u) = u p(1 − u)qϕ(u), this equation will reduce to the hypergeometric type

[
u(1 − u)

d2

du2 + [(2p + 2) − (2p + 2q + 2)u]
d

du
+ [a2 − 2pq − 2q]

]
ϕ(u) = 0. (38)

where p and q are fixed as follows,
⎧
⎨

⎩

p = − 1
2 ±

√
(S2

0 − V 2
0 ) − 2(EV0+mS0)

γ
− (E2−m2)

γ 2

q = 1
2 ±

√
1
4 + (S2

0 − V 2
0 ),

(39)

and the solution of Eq. (38) can be written as

ϕ(u) ∼2 F1 (a, b; c; u) =
∞∑

k=0

(a)k(b)k
(c)k

uk

k! (40)

with the parameters a, b and c are given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a = p + q + 1
2 − i

√
(E2−m2)

γ 2

b = p + q + 1
2 + i

√
(E2−m2)

γ 2

c = 1 ± 2
√

(S2
0 − V 2

0 ) − 2(EV0+mS0)
γ

− (E2−m2)

γ 2

(41)

The mathematical solutions of Eq. (36) in the former variable x as

	(x)) = Nγ (1 + γ x)pxq2 F1 (a, b; c; 1 + γ x) , (42)

where Nγ is the normalization constant and the boundary condition that (u −→ 1orx −→ 0) leads the wave
function tending to finite, the hypergeometric function reduced to a polynomial with the following restriction

a = −n, (43)

which is the quantization rule of the system and gives us the energy eigenvalues as

E±
n = −V0

mS0 + γ
2

[
(n + q)2 − (S2

0 − V 2
0 )
]

V 2
0 + (n + q)2

±1

2

{
V 2

0

[
2γmS0 + γ 2

(
(n + q)2 + (V 2

0 − S2
0 )
)]2

[
V 2

0 + (n + q)2]2

+ 4m2
[
(n + q)2 − S2

0

]− 4γmS0
[
(n + q)2 − (S2

0 − V 2
0 )
]− γ 2

[
(n + q)2 − (S2

0 − V 2
0 )
]2

V 2
0 + (n + q)2

} 1
2

(44)

Also for this case, for large values of n, the second term is not defined . In order to ensure the positivity of the
square root of energy, one must impose an upper bound on the allowed values of n.

Now in our analysis, it is interesting to study two particular cases
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First; if γ = 0 absence of deformation, we replace γ = 0 in (44) we find,

E±
n = −mV0S0

V 2
0 + (n + q)2 ± m

√
(n + q)2 − S2

0

V 2
0 + (n + q)2 (45)

Second, if γ = 0 and S0 = 0, taking (γ → 0) and S0 = 0,the expression of energy spectrum (44) become

E±
n = ± m

√

1 + V 2
0

(n+q)2

(46)

which coincides exactly with those of the literatures [63].
At the end of this section, we mention that in the region x < 0, we get the same form of the solution (42)

if we make the change of the variables y = −x .

5 Conclusion

In this contribution, we have established an exact and explicit solution of some problems in the context of new
type of the extended uncertainty principle using the displacement operator method such as: The Klein–Gordon
particle confined in a one dimensional box, the scalar particle with linear vector and scalar potentials and
the case of Coulomb-type vector and scalar potentials. In these three cases, the exact analytical solution is
determined, the wave functions and the exact energy spectrum are obtained depending on the deformation
parameter γ. On the other hand, the expressions of energy spectrum vary with all the power of n , which
explain the confinement phenomenon. Also, it is mentioned that for the last two cases, bound states are limited,
the expressions of energy are not defined for large values of n, one must impose an upper bound on the allowed
values of n. Finally the limiting cases are presented.
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Abstract The Green function for Dirac oscillator in (1+1) dimension in the context of the extended uncertainty
principle (EUP) is calculated exactly via the path integral formalism. The spectrum energy is determined, the
corresponding wave functions suitably normalized are derived and they are expressed by the Gegenbauer’s
polynomials. Special cases are considered.

1 Introduction

It is well known that the spin is a fundamental physical quantity in quantum physics and plays a significant role
in various areas of physics, in particular, in the explanation of the mesoscopic phenomena. In the relativistic
case, the exact analytical solutions of physical models much required, enables us to explore at the same
time relativistic and spin effects, and the relativistic principles require that space-time must be described
in the unified manner. Indeed, Feynman’s path integral formulation for systems with spin has not yet been
definitively achieved due to the discrete nature of the spin and the requirements of relativistic invariance. In
fact, path integral uses classical and continuous concepts such as trajectories whereas the spin is irreducibly
of a discrete nature, without classical equivalent, and to satisfy the relativistic invariance requirements on the
other hand. To overcome this difficulty within this framework, some models were presented for this purpose.
For example, the Feynman attempt for the free Dirac electron using the Poisson stochastic process [1], the
Schulman description of the spin of a nonrelativistic particle by the top model using the three Euler angles [2],
and its extension to the relativistic case [3], the Barut–Zanghi theory for the classical spinning electron related
to zitterbewegung [4], the bosonic and fermionic Schwinger model in the related coherent state space [5–7] and
the supersymmetric model using the Grassmann variables for the spin evolution with many developments [8–
11].

Recently, the applicability of this Feynman formulation for the spin system has undergone notable devel-
opment in various domains of physics with different topologies modeled by deformed algebras. For example,
effects of the gravitational field in quantum mechanics in presence of the generalized uncertainty principle
(GUP) [12–14], and on the noncommutative geometry in quantum system [15,16]. Consequently, in this
regard, a significant number of papers have been published. Citing for instance, within the GUP framework the
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spinning particle subjected to the action of combined vector and scalar potentials [17,18] and the Dirac oscilla-
tor [19,20]. In noncommutative space, the Klein–Gordon and Dirac oscillators [21], and the harmonic oscillator
related to energy-dependent potential [22]. And others important similar references using path approach as,
the Klein–Gordon equation with the energy dependent linear and Coulomb potentials is treated in [23] and
the harmonic oscillator and the radial hydrogen atom propagators related to energy-dependent potentials are
analyzed [24].

Furthermore, there another type of deformation due to the topology of the physical space called the
extended uncertainty principle (EUP) [25–30]. As an example in the (anti)-de sitter background, the Heisenberg
uncertainty principle is modified by introducing corrections proportional to the cosmological constant � =
−3λ2, where λ2 < 0 indicates de-Sitter space-time, and λ2 > 0 for the anti-de Sitter space-time. This latter
is invariant with special relativity (SR).

Our attempt through this work is to set up a path integral formulation to establish the Green function for
the Dirac oscillator problem in the context of this EUP. At the same time, it is important to remember that the
Dirac oscillator was introduced for the first times by [31,32]. It was the subject of many developments and
received considerable study in various areas of physics. For example, it appears in quantum optics [33], in
nuclear physics [34], in noncommutative geometry [35] and in graphene physics [36]. It is used as the confining
part of the phenomenological Cornell potential and an intergroup potential in quantum chromodynamics.

2 Quantum Mechanics on (Anti)-de Sitter Background

The EUP can be obtained from the definition of quantum mechanics on (anti)-de sitter space-time. It is
well known that (anti)-de Sitter space-time can be realized as a hyperboloid of equation ηabζ

aζ b = ±R2

embedded in five-dimensional Minkowski space, with coordinates ζ a(a = 0, 1, 2, 3, 4) and corresponding
metric is ηab = diag (1,−1,−1, −1,±1) . That will be reduced to ordinary special relativity when R → ∞
[37],

ds2 = ηabdζ adζ b = Bμν (x) dxμdxν; μ, ν = 0, 1, 2, 3, (1)

where the parametrization of the hyperboloid is given by projective (Beltrami) coordinates [38],

xμ = ζμ

ζ4
, Bμν (x) =

(
1 − ηστ xσ xτ

R2

)(
ημν − xμxν

R2

)
. (2)

Bμν (x) is Beltrami metric, it is similar to the Minkowski one in flat space-time and the Beltrami de sitter (BdS)
space-time is the dS space-time with Beltrami metric. The generators of de-Sitter in Beltrami coordinates and
the momentum operators satisfy the following commutation relations [25,39,40], (throughout this paper we
adopt the natural units h̄ = c = 1)

[
Ĵμν, Ĵσρ

]
= i

(
ηνρ Ĵμσ − ηνσ Ĵμρ + ημσ Ĵνρ − ημρ Ĵνσ

)
, (3)

[
Ĵμν, p̂ρ

]
= i

(
ημρ p̂ν − ηνρ p̂μ

)
,

[
p̂μ, p̂ν

] = i Ĵμν

R2 , (4)

[
x̂μ, p̂ν

] = i

(
ημν + x̂μ x̂ν

R2

)
,
[
x̂μ, x̂ν

] = 0 and μ, ν = 0, 1, 2, 3, (5)

where Ĵμν are the generators of Lorentz transformations given as Ĵμν = x̂μ p̂ν − x̂ν p̂μ.

For the anti-de-Sitter space and in the case of the one-dimensional space, the modified commutation
relations leading to the extended commutation relations is given as [41],

[
X̂ , P̂

]
= i

(
1 + α X̂2

)
, (6)

where α is a positive deformation parameter proportional to the cosmological constant, or inversely proportional
to the square of the anti-de Sitter radius (α = H2: H2 is the Hubble rate). Which lead to the following EUP:

(�X) (�P) � 1

2

(
1 + α (�X)2) , (7)
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which indicates the emergence of a nonzero minimal uncertainty in momentum. The minimization of (7) with
respect to �X gives

(�P)min =
√

α

2
. (8)

with α is positive.
According to (6), the X̂ and P̂ operators in this representation can be realized by operators x̂ and p̂, as

follows: {
X̂ = x̂
P̂ = (

1 + αx2
)
p̂

, (9)

with x̂ and p̂ satisfy the usual Heisenberg canonical commutation relation:
[
x̂, p̂

] = i . We note that the

momentum operator P̂ is not symmetric in all Hilbert space L2 (R, dx) . For this, we need to change this space

into subspace L2
(
R, dαx = dx

1+αx2

)
. This makes the modified scalar product of two functions ψ(x) and ϕ(x)

in position space basis {|x〉} as

〈ϕ | ψ〉 =
∫

ϕ∗ (x) ψ (x) dαx . (10)

From this modification, we can construct the closure relation as follows

+∞∫
−∞

dαx |x〉 〈x | = 1, (11)

and the corresponding projection relation is

〈x | x ′〉 = (
1 + αx2) δ (x − x ′) , (12)

otherwise

〈x | x ′〉 =
+∞∫

−∞

dp

2π
exp

[
ı p√
α

(
arctan

√
αx − arctan

√
αx ′)] . (13)

Then we use the simplified form

〈
x
∣∣∣P̂
∣∣∣ x ′〉 = −

+∞∫
−∞

pdp

2π
exp

[
ı p√
α

(
arctan

√
αx − arctan

√
αx ′)] . (14)

Assuming no deformation for the time component, we have

〈x0| x ′
0〉 = δ

(
x0 − x ′

0

)
,

+∞∫
−∞

dx0 |x0〉 〈x0| = 1. (15)

Moreover, for the de-Sitter space, it can be constructed by replacing α −→ (−α′) where α′ is a positive
parameter, we have

(�X) (�P) ≥ 1

2

(
1 − α′ (�X)2) . (16)

This latter leads to no minimum momentum uncertainty, as we write

− (�P)

α′ − 1

α′
√

α′ + (�P)2 ≤ (�X) ≤ − (�P)

α′ + 1

α′
√

α′ + (�P)2. (17)

Then Eq. (17) it becomes bounded − 1√
α′ ≤ (�X) ≤ 1√

α′ in the limit (�Pi ) → 0. While the representations

of X̂ and P̂ can be thought of as,

X̂ = x; P̂ = −ı
(
1 − α′x2) ∂

∂x
. (18)

In the following section, we concentrate on the explicit calculation of the Green function for relativistic Dirac
oscillators in the context of the EUP, by using the path integral formalism.
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3 Derivation of Path Integral for the 1D-Dirac Oscillator

As it is known, the Dirac oscillator propagator in (1 + 1) dimensions is the causal Green function S(c) (xb, xa)
of the Dirac oscillator equation, which is defined as(

γ μ�̂bμ − m
)
S(AdS)

(
xμ
b , xμ

a

) = − (
1 + αx2

b

)
δ (xb − xa) δ (tb − ta) , (19)

where the components of �̂μ are expressed as

�̂0 = P̂0, �̂1 = P̂ − ımωγ 0 X̂ . (20)

Here the operators (X̂ , P̂) satisfy the commutation relations of the EUP, which is defined in the relation
(6). While γμ are the Dirac matrices verify the commutation relation {γ μ, γ ν} = 2ημν, with the metric
ημν = diag(1,−1) and μ, ν = 0, 1. These Dirac matrices can be chosen in terms of Pauli matrices σ i as
follows:

γ 1 = iσ 1 and γ 0 = σ 3. (21)

The corresponding solution of Eq. (19) is defined as the inverse of the Dirac operator Od−,

S(AdS) (xb, xa) = −
〈
xb

∣∣∣∣
[
Od−

]−1
∣∣∣∣ xa

〉
= −

〈
xb

∣∣∣∣Od+
[
Od−Od+

]−1
∣∣∣∣ xa

〉
. (22)

Od± are defined as γ μ�̂μ ±m and Od+ represents to the global Dirac projection operator. Now, following [42],
the global representation for the causal Green function is obtained by inserting the completeness relation for

the space-time states given by Eqs. (11) and (15) between the operators Od+ and
[Od−Od+

]−1
, we get

S(AdS) (xb, xa) =
(
γ μ�̂μ + m

)
b
G(AdS) (xb, xa) . (23)

Here G(AdS) (xb, xa) is the global Green function defined as

G(AdS) (xb, xa) = −
〈
xb

∣∣∣∣
[
Od−Od+

]−1
∣∣∣∣ xa

〉
, (24)

and introducing the Schwinger proper-time method, the Green function G(g)
(
xμ
b , xμ

a
)

becomes

G(AdS)
(
xμ
b , xμ

a

) = ı

+∞∫
0

dλ
〈
xμ
b |exp (ıλH)| xμ

a

〉
. (25)

H is the Hamiltonian of the system in question whose quadratic form, and will reduce to

H = Od−Od+ = P̂2
0 − P̂2 − m2ω2 X̂2 − m2 + mωγ 0

(
1 + α X̂2

)
, (26)

which is associated the case of anti-de Sitter space and their corresponding representation (9). Then by taking
into account the properties of the following exponential matrix, will simplify to:

exp
[
ıλmωγ 0

(
1 + α X̂2

)]
= cos

(
λmω

(
1 + α X̂2

))
+ ıγ 0 sin

(
λmω

(
1 + α X̂2

))
, (27)

or in another form

exp
[
ıλmωγ 0

(
1 + α X̂2

)]
=

∑
s=±1

χsχ
†
s exp

[
ıλsmω

(
1 + α X̂2

)]
, (28)

where χ
†
s = 1

2

(
1 + s, 1 − s

)
. Substituting (28) into (25), the global Green function can write as follow

G(AdS)
(
xμ
b , xμ

a

) =
∑
s=±1

χsχ
†
s G(AdS)

(
xμ
b , xμ

a

)
. (29)
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G(dS)
(
xμ
b , xμ

a
)

is the new global representation defined by:

G(AdS)
(
xμ
b , xμ

a

) = ı

+∞∫
0

dλ
〈
xμ
b

∣∣∣exp
(
−ıλH(s)

)∣∣∣ xμ
a

〉
, (30)

and

H(s) = −
[
P̂2

0 − P̂2 − m2 − (mω)2 X̂2 + smω
(

1 + α X̂2
)]

. (31)

At this level, to derive a path integral representation for G(AdS)
(
xμ
b , xμ

a
)
, we follow the standard discretization

method, we write exp
(−ıλH(s)

)
by

[
exp

(−ıλH(s)/ (N + 1)
)]N+1

, and we insert N times the identities of
Eqs. (11) and (15) between each pair of operators exp

(−ıελH(s)
)

infinitesimal with ε = 1/ (N + 1) . Then,
taking at the end, the limit N → ∞, the expression of G(AdS)

(
xμ
b , xμ

a
)

becomes as,

G(AdS)
(
xμ
b , xμ

a

) = −ı lim
N→∞

∞∫
0

dλ
N∏
j=1

[∫
dαx jdx0 j

]
N+1∏
j=1

〈
x j , x0 j

∣∣ [1 − ıελH(s) + O
(
εn�2

)] ∣∣x j−1x0 j−1
〉
,

(32)
where x0 = xa, x00 = x0a, xN+1 = xb and x0N+1 = x0b. Using the relations (9) and (14) into (32), and
introducing the integral representation follow:

〈
x j , x0 j | x j−1, x0 j−1

〉 =
∫

dp0 j

2π
exp

(
ı p0 j�x0 j

) ∫ dp j

2π
exp

(
ı p j

� arctan(
√

αx j)√
α

)
, (33)

we will get the following expression

G(AdS)
(
xμ
b , xμ

a

) = −ı lim
N→∞

∞∫
0

dλ
N∏
j=1

[∫
dαx jdx0 j

]
N+1∏
j=1

[∫
dp j

2π

dp0 j

2π

]

× exp
{
ı
∑N+1

j=1

[
p j

� arctan(
√

αx j)√
α

+ p0 j�x0 j + ελ
(
p2

0 j

−p2
j − (mω)2 x2

j − m2 + smω
(

1 + αx2
j

))]}
. (34)

The Gaussian integration on the p j , x0 j and p0 j variables is immediate, we obtain

G(AdS)
(
xμ
b , xμ

a

) = −ı lim
N→∞

∞∫
0

dλ

∫
dp0

2π
eip0(x0b−x0a)

N∏
j=1

∫
dαx j

N+1∏
j=1

1√
4π ıλε

× exp

{
ı
∑N+1

j=1

[
(� arctan(

√
αx j))

2

4λεα
+ ελ

(
p2

0 − (mω)2 x2
j − m2 + smω

(
1 + αx2

j

))]}
. (35)

It is remarkable that our system converted to the case of the position-dependent effective mass. Now, in
order to make this expression to the ordinary form of the Feynman path integral with constant mass, we will
use the following coordinate transformation method,

y = f (x) , y0 = x0. (36)

This new y−variable changes in the interval
]
− π

2
√

α
, + π

2
√

α

[
according to variables of x in the interval

]−∞, +∞[ . In order to determine all quantum fluctuations, we perform the corrections associated with

measure and action terms:
(
dx j/(1 + αx2

j )
)

and
((

� arctan
(√

αx j
))2

/4λεα
)

to get the conventional form

of Feynman path integral. To determine the appropriate corrections and avoid any ambiguities, we discretize
the measure and choose for any δ-point discretization interval (x (δ)

j = δxj + (1 − δ) xj−1) according to the



   36 Page 6 of 14 A. Merad et al.

technique used in [19]. So after straightforward calculations, we obtain the total quantum correction with two
approaches, Kleinert method [43] and standard method [44]

CT
Kleinert = 2iελ

m2ω2

α

(
1 + tan2(

√
αy)

)
δ (2δ − 1) , (37)

and

CT
Khand = 2iελ

m2ω2

α

[(
1 − 8δ + 8δ2) tan2(

√
αy)

]
. (38)

In order to obtain the exact results we should give the two values of δ, when using Kleinert method [43] we

will find δ = 0, 1/2, and when using a standard method [44] we get δ = 1
2

(
1 ± 1/

√
2
)

. These points are the

same obtained in one dimension case with generalized uncertainty principle [19]. Under these considerations
we will simplify CT to zero, and the amplitude G(AdS)

(
yμ
b , yμ

a
)

becomes as follows:

G(AdS)
(
yμ
b , yμ

a

) = −ı

∞∫
0

dλ
N∏
j=1

∫
dp0

2π
eip0(y0b−y0a)

N+1∏
j=1

eıλ
[
p2

0−m2+smω
]

× K(PT )
(
yμ
b , yμ

a

)
. (39)

Here K(PT )
(
yμ
b , yμ

a
)

is identical the propagator to the standard problem of the Poschl–Teller potential defined
by

K(PT )
(
yμ
b , yμ

a

) = lim
N→∞

N∏
j=1

∫
dy j

N+1∏
j=1

1√
4π ıλε

exp

{
ı

[(
�y j

)2

4λε
− ελ

(
m2ω2

α
− smω

)
tan2 (√αy j

)]}
.

(40)
While in the case of de-Sitter space we replace α by

(−α′), and it is given the standard problem of the modified
Poschl–Teller potential.

4 Calculation of the Propagator

The path integral of y
(
t j
)

in Eq. (40) (i.e., anti-de Sitter space) is exactly the propagator associated with the
Poschl–Teller potential. Which is solved exactly in Refs. [44,45], and equals

G(AdS)
(
yμ
b , yμ

a

) = −ı lim
N→∞

∞∫
0

dλ

∫
dp0

2π
eip0(y0b−y0a) eıλ

[
p2

0−m2+smω
]

×
[ ∞∑
n=0

e−ıλE (PT )
n,s �(PT )

n,s (yb)
(
�(PT )

n,s

)∗
(ya)

]
, (41)

with E (PT )
n,s is the energy spectrum associated to the Poschl–Teller potential, which is defined as

E (PT )
n,s = α

(
n2 + (2n + 1) ηs

)
, (42)

and ψ
(PT )
n,s (y) are corresponding the wave functions and given by

ψ(PT )
n,s (y) = � (ηs)

√
22ηs−1n! (n + ηs)

√
α

π� (n + 2ηs)

(
cos

(√
αy
))ηs Cηs

n

(
sin

(√
αy
))

, (43)

where

ηs = 1 − s

2
+ mω

α
. (44)

ηs is parameter determined according the condition of the extended uncertainty principle, and the characteristic
length of oscillator, retaining the solution associated with mω

α
> 1, the values η+ = mω

α
, η− = 1 + mω

α
are
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accepted. While the other negatives values are rejected. Substituting (41) into (29), the propagator becomes
as:

G(AdS)
(
yμ
b , yμ

a

) = −ı

∞∫
0

dλ

∫
dp0

2π
eip0(y0b−y0a)

∑
n

∑
s=±1

χsχ
†
s e

ıλ
[
p2

0−m2+smω−E (PT )
n,s

]

×
[
(� (ηs))

2 22ηs−1n! (n + ηs)
√

α

π� (n + 2ηs)

(
cos

(√
αyb

))ηs Cηs
n

(
sin

(√
αyb

))

× (
cos

(√
αya

))ηs Cηs
n

(
sin

(√
αya

))]
. (45)

An integration over λ to give this expression

G(AdS)
(
yμ
b , yμ

a

) = −ı
∑
n

∑
s=±1

(� (ηs))
2 22ηs−1n! (n + ηs)

√
α

π� (n + 2ηs)

∫
dp0

2π

eip0(y0b−y0a)

p2
0 − En,s

χsχ
†
s

× [(
cos

(√
αyb

))ηs Cηs
n

(
sin

(√
αyb

)) (
cos

(√
αya

))ηs Cηs
n

(
sin

(√
αya

))]
, (46)

with
En,s (p0) = m2 − smω + E (PT )

n,s . (47)

The above Eq. (46) lacks the integration over energy p0. This can be converted to a complex integration along
the special contour C , and then using the residue theorem, we have:

∮
dp0

2π i

eip0(y0b−y0a)

p2
0 − En,s

f (p0) =
n∑

k=1

Res
(
e−i E(tb−ta)

E2−En,s
f (E) , Ek

)
e−i Ek (y0b−y0a)

=
∑

ε=±1

f
(
E (ε)
n,s

)

2εω
(AdS)
n,s

e−i E (ε)
n,s (y0b−y0a)� (ε (y0b − y0a)) , (48)

where ε = ±1 and � (x) is the Heaviside function. This gives the following poles:

E (ε)
n,s = εω(AdS)

n,s = ±
√
m2 − smω + α

(
n2 + (2n + 1) ηs

)
. (49)

Using the residue theorem on global Green function expression defined in Eq. (46). The integrations over p0
are carried, and becomes as

G(AdS)
(
yμ
b , yμ

a

) = −ı
∑

ε=±1

∑
s=±1

∑
n

(� (ηs))
2 22ηs−1n! (n + ηs)

√
α

π� (n + 2ηs)

×
{
e−iεω(AdS)

n,s (y0b−y0a)

2εω
(AdS)
n,s

�(ε (y0b − y0a)) χsχ
†
s

(
cos

(√
αyb

))ηs Cηs
n

(
sin

(√
αyb

))

× [(
cos

(√
αya

))ηs Cηs
n

(
sin

(√
αya

))]
. (50)

Furthermore, we can get the global Green function G(dS)
(
yμ
b , yμ

a
)

in de-Sitter Snyder case, just by changing
α by (−α) with retaining the term of ηs .

5 Spectral Energies and Spinorial Wave Functions

To obtain the exact solutions for the wave functions and spectral energies for the system governed by the Dirac
equation, it must bring the corresponding spectral decomposition of Dirac oscillator in (1 + 1) dimension in
the context of the EUP by the act operator (γ ν�̂ν + m)b on Eq. (50). This will be simplified as
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S(AdS) (xb, xa) = −ı

[
ıσ 3 ∂

∂y0b
+ σ 1

(
∂

∂yb
+ σ 3mω√

α
tan

(√
αyb

))+ m

]

×
∑
s=±1

∑
n

{
(� (ηs))

2 22ηs−1n! (n + ηs)
√

α

π� (n + 2ηs)

e−isω(AdS)
n,s (y0b−y0a)

2ω
(AdS)
n,s

� (s (y0b − y0a)) χsχ
†
s

× [(
cos

(√
αyb

))ηs Cηs
n

(
sin

(√
αyb

)) (
cos

(√
αya

))ηs Cηs
n

(
sin

(√
αya

))]}

+
{

− (� (ηs))
2 22ηs−1n! (n + ηs)

√
α

π� (n + 2ηs)

e+isω(AdS)
n,s (y0b−y0a)

2ω
(AdS)
n,s

� (−s ((y0b − y0a))) χsχ
†
s

× [(
cos

(√
αyb

))ηs Cηs
n

(
sin

(√
αyb

)) (
cos

(√
αya

))ηs Cηs
n

(
sin

(√
αya

))]}
. (51)

With some known relationships in algebra matrices for Dirac, we have

σ 3χs = sχs, σ 1χs = χ−s and σ 2χs = isχ−s, (52)

and with helping of Gegenbauer’s polynomials properties [46],

⎧⎪⎨
⎪⎩

d
duC

η
n (u) = 2ηCη+1

n−1 (u) ,

nCη
n (u) = (2η + n − 1)uCη

n−1 (u) − 2η(1 − u2)Cη+1
n−2 (u) ,

(2η + n)Cη
n (u) = 2η

[
Cη+1
n (u) − uCη+1

n−1 (u)
]
,

(53)

we can write the Green function through a straightforward calculation, as follows:

S(AdS) (xb, xa) = −ı
∑
s=±1

∑
n

(� (ηs))
2 22ηs−1n! (n + ηs)

√
α

π� (n + 2ηs)

(
cos

(√
αyb

))ηs (cos
(√

αya
))ηs

×
{
e−isω(AdS)

n,s (y0b−y0a)

2ω
(AdS)
n,s

� (s (y0b − y0a))
[(

ω(dS)
n,s + m

)
Cηs
n (ξb)C

ηs
n (ξa) χsχ

†
s

+√
α

[
−
(

1 − s

2

)(
1 + mω

α

)
tan

(√
αyb

)
Cηs
n (ξb) + 2ηs cos

(√
αyb

)
Cηs+1
n−1 (ξb)

]
Cηs
n (ξa) χ−sχ

†
s

]}

−
{
e+isω(AdS)

n,s (y0b−y0a)

2ω
(AdS)
n,s

�(−s (y0b − y0a))
[(

−ω(dS)
n,s + m

)
Cηs
n (ξb)C

ηs
n (ξa) χsχ

†
s

+√
α

[
−
(

1 − s

2

)(
1 + mω

α

)
tan

(√
αyb

)
Cηs
n (ξb) + 2ηs cos

(√
αyb

)
Cηs+1
n−1 (ξb)

]
Cηs
n (ξa) χ−sχ

†
s

]}
.

(54)

Now, to obtain the spectral energies and corresponding eigenfunctions, we must unify the expression of energy
E (ε)
n,s . Which leads us to make the following changes on the second term in the Green function, which are

multiplied by � (−s (y0b − y0a))

s → s′ = −s,

n → n′ = n − s,

ηs → ηs′ = ηs + s. (55)
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After these changes, we can write

S(AdS) (xb, xa) = −ı
∑
s=±1

∑
n

(� (ηs))
2 22ηs−1n! (n + ηs)

√
α

π� (n + 2ηs)

× (
cos

(√
αyb

))ηs (cos
(√

αya
))ηs e−isω(dS)

n,s (y0b−y0a)

2ω
(dS)
n,s

� (s (y0b − y0a))

×
{[(

ω(dS)
n,s + m

)
Cηs
n (ξb)C

ηs
n (ξa) χsχ

†
s

+ √
α

[
−
(

1 − s

2

)(
1 + mω

α

)
tan

(√
αyb

)
Cηs
n (ξb)

+2

(
1 − s

2
+ mω

α

)
cos

(√
αyb

)
Cηs+1
n−1 (ξb)

]
Cηs
n (ξa) χ−sχ

†
s

}

−
{[(

−ω(dS)
n,s + m

)
Cηs+s
n−s (ξb)C

ηs+s
n−s (ξa) χ−sχ

†
−s

+ √
α

[
−
(

1 + s

2

)(
1 + mω

α

)
tan

(√
αyb

)
Cηs+s
n−s (ξb)

+2

(
1 + s

2
+ mω

α

)
cos

(√
αyb

)
Cηs+s+1
n−s−1 (ξb)

]
Cηs+s
n−s (ξa) χsχ

†
−s

}
. (56)

From above expression, we can rewrite the causal Green’s function as follows:

S(AdS) (xb, xa) = −ı
∑
s=±1

∑
n

exp
(
−ısω(AdS)

n,s (y0b − y0a)
)

� (s (y0b − y0a))

×
[
� (ηs)

√
22ηs−1n!(n+ηs )

√
α

π�(n+2ηs )

√
m+ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs
n (ub) ϑ

ηs
b χs

+ı
√

α� (ηs + s)

√
22(ηs+s)−1(n−s)!(n+ηs )

√
α

π�(n+2ηs+s)

√
m−ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs+s
n−s (ub) ϑ

ηs+s
b χ−s

]

×
[
� (ηs)

√
22ηs−1n!(n+ηs )

√
α

π�(n+2ηs )

√
m+ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs
n (ua) ϑηs

a χ†
s

+ı
√

α� (ηs + s)

√
22(ηs+s)−1(n−s)!(n+ηs )

√
α

π�(n+2ηs+s)

√
m−ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs+s
n−s (ua) ϑηs+s

a χ
†
−s

]
. (57)

In Eq. (57) we have two types of propagation, one with positive energy (+EAnti
n,α ) propagating to the future and

the other with negative energy (−EAnti
n,α ) propagating to the past. Consequently, we obtain this result in the

former variable,

S(α) (xb, xa, tb − ta) = −
∑
s=±1

∑
n

[
�(tb − ta) �

(α)+
n (xb) �̄

(α)+
n (xa) e

−ı EAnti
n,α,s (tb−ta)+

� (− (tb − ta))�
(α)−
n (xb) �̄

(α)−
n (xa) e

ı EAnti
n,α,s (tb−ta)

]
. (58)

This formula is the spectral decomposition of the Green function, within which we extract the wave functions

�(AdS)s
n (x) = � (ηs)

√
22ηs−1n!(n+ηs )

√
α

π�(n+2ηs )

√
m+ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs
n (ub) ϑ

ηs
b χs

+ ı
√

α� (ηs + s)

√
22(ηs+s)−1(n−s)!(n+ηs )

√
α

π�(n+2ηs+s)

√
m−ω

(AdS)
n,s

2ω
(AdS)
n,s

Cηs+s
n−s (ub) ϑ

ηs+s
b χ−s, (59)

and we can return to the old variables by means of the following relations

u = sin
(
arctan

(√
αx
))

, ϑ = cos
(
arctan

(√
αx
))

. (60)
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Fig. 1 E (AdS)
n,s=1 is the energy spectrum versus n for several values of α

Where the corresponding spectral energies are

E (AdS)±
n,α,s = ±

√
m2 + 2mω

(
n + 1 − s

2

)
+ α

(
n2 + 1 − s

2
(2n + 1)

)
. (61)

The dependence on n2 corresponding to α effect of the modification of the Heisenberg algebra, due to the
EUP, which is a characteristic of the confinement phenomena. With various the values of α and with spin up
(s = 1), we can plot the appropriate curves of positive and negative energies in Fig. 1. We clearly notice that
the energy E (AdS)±

n,α,s is presented as a function of n for several values of α, the spectrum is expanded, E (AdS)+
n,α,s

is an increasing (E (AdS)−
n,α,s is decreasing) monotonous function for arbitrary α.

Next, we want to check the current density (ρ, Jx ) for (1+1)-dimensional Dirac oscillator in the context of
the EUP. Activating the positive use of this method (path integral formalism) for normalized the wave functions
in the context of the extended uncertainty principle. As we know the current density are defined as

ρ =
∫

dλx(�
(AdS)s
n (x))†�((AdS))s

n (x) , (62)

Jx =
∫

dλx�̄
((AdS))s
n (x) γ 1�((AdS))s

n (x) . (63)

After straightforward calculation, we can confirm the current density of Dirac oscillator in (1 + 1) dimension
in the context of the EUP are given as

ρ = 1, (64)

Jx =
∫

dλx(�
(AdS)s
n (x))†σ 2�(AdS)s

n (x) = 0. (65)

Which approves the same results in usual case of the Dirac oscillator in (1 + 1) dimension (α = 0).

6 de Sitter Snyder Spaces

In the case of de-Sitter Snyder space, we will follow the same calculation procedures as presented in the
previous section. Which can be constructed by replacing α by

(−α′) in Eq. (61). The spectral energies E (dS)±
n,α′,s

are given as:

E (dS)±
n,α′,s = ±

√
m2 + 2mω

(
n + 1 − s

2

)
− α′

(
n2 + 1 − s

2
(2n + 1)

)
. (66)
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n,s=1 is the energy spectrum versus n for several values of α′

We note that when the quantum number n is large, the spectral energies would have no physical meaning.
This indicates that one needs to impose an upper bound on the values of n. From these last expressions of the
spectral energies E (dS)±

n,α′,s , we can determine this limit by using

E (dS)

n,α′,s
dn

|N= 0, (67)

where N implies to
(mω

α′ + 1−s
2α′

)
, and E (dS)+

n,α′,s is decreasing (while E (dS)−
n,α′,s is an increasing) monotonous

function for arbitrary α′. These cases are illustrated by the following curve (Fig. 2)
While the corresponding wave functions are given from Eq. (59) by substituting (α → −α′), and which

leads to

u = sinh
(

tanh−1
(√

α′x
))

, ϑ = cosh
(

tanh−1
(√

α′x
))

. (68)

In the following subsections, we will present the special and important cases to validate these our calculations.

6.1 Without Deformation Case

In order to obtain the ordinary case, we put the limit α → 0, ηs = η → ∞, by using [46]

lim
λ→∞ λ− n

2 C
λ
2
n

(
x

√
2

λ

)
= 2− n

2

n! Hn(x), lim
λ→∞

�(λ + a)

�(λ)
e−a ln λ = 1, (69)

the doubling formula

�(2x) = 22x−1

√
π

�(x)�

(
x + 1

2

)
, (70)

and

lim
α→0,η→∞

(
1 + αx2)η = exp

(
−mω

2
x2
)

. (71)

From the above limits, we can obtain the wave functions and energy spectrum, and they are given respectively

lim
α−→0

�(α)s
n (x) = �(α=0)s

n (x) =
(
f (α=0)s
n (x)

g(α=0)s
n (x)

)
,
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with the following components,

f (α=0)s
n (x) =

√√√√√
√
mω/π

(
E (α=0)
n,s + m

)

2n+1n!E (α=0)
n,s

exp
(
−mω

2
x2
)
Hn

(√
mωx

)
. (72)

g(α=0)s
n (x) = −

√√√√√
√
mω/π

(
E (α=0)
n,s − m

)

2n(n − s)!E (α=0)
n,s

exp
(
−mω

2
x2
)
Hn−s

(√
mωx

)
, (73)

and

E (dS)±
n,α′=0,s = ±

√
m2 + 2mω

(
n + 1 − s

2

)
. (74)

We deduct exactly the same result without deformed uncertainty relation which coincide with those obtained
from the usual Dirac oscillator in (1 + 1) dimensions [11].

6.2 Non-relativistic Limit

To obtain the energy level in non relativistic limit case for the one-dimensional Dirac oscillator in anti-de Sitter
spaces system E (AdS)

N R,s , we put E (AdS)
n,α,s = m + E (AdS)

N R,s with m � E (AdS)
N R,s and using the Taylor development of

(61) in the second order approximation, we find:

E (AdS)+
N R,s ≈ ω

(
n + 1 − s

2

)
+ α

2m

(
n2 + 1 − s

2
(2n + 1)

)

+ 1

2

[
ω

(
n + 1 − s

2

)
+ α

2m

(
n2 + 1 − s

2
(2n + 1)

)]2

, (75)

with m represents the rest energy of the particle, the second and third terms represent, respectively, the energy
of the non-relativistic oscillator of frequency ω and the relativistic correction both in the context of the extended
uncertainty principle.

This implies that the corresponding eigenvalues associated with this energy level in the non-relativistic
limit are given by

�
(AdS)+
N R,s (x) = � (ηs)

√
22ηs−1n!(n+ηs )

√
α

π�(n+2ηs )
Cηs
n (ub) ϑ

ηs
b χs, (76)

where we have used the following limits:

lim
m�

√
m+ω

(AdS)+
n,s

2ω
(AdS)+
n,s

≈ 1, lim
m�

√
m−ω

(AdS)+
n,s

2ω
(AdS)+
n,s

≈ 0. (77)

7 Conclusion

In this paper, we have constructed the path integral representation for the Green function for the Dirac oscillator
in (1 + 1) dimension in the EUP. Which indicates to presence a nonzero minimal uncertainty in momentum.
We obtained the exact spectral energies and corresponding eigenfunctions expressed in terms of Gegenbauer
polynomials. The energy levels show a dependence on n2 corresponding to α effect of the modification of the
Heisenberg algebra, due to the EUP, which is a characteristic of the confinement phenomena as in the case
of non-commutative geometry. As a result, for a fixed value of n, the energy E (AdS)

n,α,+ increases monotonically
with the increase of the EUP parameter α.

We have also deduced special cases:
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(1) de-Sitter spaces case by replacing α −→ −α′, we note that the corresponding energy spectrum E (dS)

n,α′,s
would have an unphysical behavior when the quantum number n is large. This indicates that one needs to
impose an upper bound on the values of n and we can also see that the energy spectrum on the de Sitter
space is smaller than the energy in ordinary quantum mechanics.

(2) Absence of deformation case by taking the limit (α −→ 0), we obtain the usual Heisenberg algebra. The
same result without deformed uncertainty relation which has been done by Rekioua and Boujdedaa [11]. A
generalization of this work in the presence of an electromagnetic field that requires a thorough discussion
is currently under consideration, and will be the subject of another study. At the end of this paper, it is
worth mentioning that the results obtained make it possible to detect the effects due to the large scale
curvature of spacetime on some physical systems: for example the confinement of quarks in quantum
chromodynamics (QCD) and the description of certain properties of electrons in graphene. We recall that
the dynamics of these two physical examples cited is modeled by the relativistic Dirac oscillator, as it is
known in the literature [36,47].
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Département des Sciences de la Matière,
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1. Introduction

The dynamics of some physical systems are modeled by deformed algebras. For

example, the description of the low energy excitations of graphene and the Fermi

velocity are based on a deformation of the Heisenberg algebra which makes the com-

mutator of momenta proportional to the pseudo-spin.1 The dynamics of systems

with variable masses in semiconductor heterostructures are formulated by deformed

quadratic algebra2 and a deformed Heisenberg algebra for the motion of a 3He

impurity atom in the Bose liquid is suggested in Ref. 3. In the context of quan-

tum gravity, the usual Heisenberg uncertainty principle can be replaced by the

so-called generalized uncertainty principle (GUP)4–10 and it is characterized by

the existence of a minimal length scale in the order of the Planck length. Several

research fields in which the concept of minimal length plays an essential role are,

the string theory,11 noncommutative geometries,12 black hole physics13 and quan-

tum gravity.14 Recently, in this sense, this GUP has undergone notable develop-

ment based on some physical observations and a significant number of papers have

been published in diverse physics area, citing for instance: the modification of the

black hole thermodynamics,15,16 the corrections to the Unruh effect and related

Unruh temperature,17 beyond the linear dispersion relations of graphene,18 the

energy-dependent potentials,19 correction of nonthermal radiation spectrum in the

background of noncommutative geometry,20 an explicit construction for Gazeau–

Klauder coherent states for a non-Hermitian system on a noncommutative,21 the

generalized time-dependent q-deformed coherent states for a noncommutative har-

monic oscillator,22 entangled states in a noncommutative space with the squeezed

states,23 q-deformed nonlinear coherent states and nonclassical behaviors of q-

deformed version of the Schrodinger cat states in noncommutative space24 and

an experimental realization of effects of noncommutative theories.25 In addition,

if we consider the quantum effects due to the topology of the physical space, the

specific type of the modified uncertainty principle is called the extended uncer-

tainty principle (EUP)26–31 and it is characterized by the existence of a nonzero

minimal uncertainty in momentum. As an example, Mignemi showed that in a

(anti-)de Sitter background, the Heisenberg uncertainty principle is modified by

introducing corrections proportional to the cosmological constant Λ = −3λ2, where

λ2 < 0 for de Sitter space–time, and λ2 > 0 for the anti-de Sitter space–time.

The introduction of this idea of (EUP) has drawn great interest and many papers

have appeared in the literature to address the effects of the extended commuta-

tion relations, the thermodynamic properties of the Schwarzschild black hole and

Unruh effect by using the simplest form of the EUP are investigated in Ref. 32,

the corrections to Hawking temperature and Bekenstein entropy of a black hole for

Rindler and cosmological horizons,33 the analytical solution of the pseudoharmonic

potential for N2 and CO diatomic molecules is determined and it is claimed that

the energy corrections coming from the deformation parameter are unlikely to

be detectable experimentally,30 the thermodynamic properties of the relativistic
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harmonic oscillators are investigated34 signals of the weak and strong deflection

gravitational lensings are studied,35 the quantum gravity effects in the vicinity of a

black hole,36 the Ramsauer–Townsend effect in q-deformed quantum mechanics37

and the Klein–Gordon oscillator in an uniform magnetic field.38

Furthermore, in the past few years, another new type of EUP with a minimum

momentum dispersion has been introduced by the action of the translation operator

in a space with a diagonal metric for the purpose of describing the motion of a

quantum particle in curved space.39–43,46–51 One has

Tλ(δx)|x〉 = |x+ δx+ λxδx〉 , (1)

where δx is an infinitesimal displacement and the parameter λ is the inverse of a

characteristic length that determines the mixing between the displacement and the

original position state. This translation is nonadditive and it can be written up to

the first order in δx as

Tλ(δx) = 1− iδx

~
Pλ , (2)

where Pλ is a generalized momentum operator. This property changes the commu-

tation relation for position and momentum as

[x̂, Pλ] = i~(1 + λx) , (3)

and yields a generalized uncertainty relation

∆x∆Pλ ≥ ~

2
(1 + λ〈x〉) . (4)

The generalized momentum operator and the position operators satisfying Eq. (3)

can be represented by40–42

Pλ = −i~(1 + λx)
d

dx
and x̂ = x , (5)

and in Hermitian form by43

Pλ = −i~Dγ and x̂ = x . (6)

Here,

Dγ =

[

(1 + λx)
d

dx
+
λ

2

]

. (7)

On the other hand, the nonadditive operator corresponds to the infinitesimal gen-

erator of the q-exponential function44,45

expq(x) ≡ [1 + (1 − q)x]
1

1−q , (8)

where x is a dimensionless variable and λ ≡ (1− q). Equation (8) represents a fun-

damental mathematical definition for the generalized thermostatistics of Tsallis and

its applications.46–51 For this purpose to see what kind of physical importance the

translation operator bears within this framework, some problems were solved for a
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quantum system. For example, the study of a particle under a null potential con-

fined in a square well,40–43 the solution of the quantum harmonic oscillator where

the problem is converted to the Morse potential case,41,52 the position-dependent

mass system with a variable potential53 and, Arda used this displacement opera-

tor to study the particle moving in an inverse square plus Coulomb-like potential

which is similar to the Rosen–Morse potential in usual position space,54 a deformed

Bohmian formalism by means of a deformed Fisher information functional and a

derivation a deformed Cramer–Rao bound in Ref. 55, a displaced anisotropic two-

dimensional non-Hermitian harmonic oscillator and graphics for the specific heat

and for the entropy of both oscillators compared with several experiments in Ref. 56,

the classical mechanics in the curved space and Bohr–Sommerfeld quantization39

and a particle confined in a bidimensional box within a generalized space.57

The main purpose of this paper is to study the Klein–Gordon and Dirac oscil-

lators with a uniform electric field analytically in the context of this new type

of EUP using the displacement operator method. To the best of our knowledge,

no relativistic problem has been studied within this framework of the translation

operator. Consequently, our attempt is to approach this new type of EUP for a

relativistic problem and to study the influence of this deformation on the properties

of the systems, such as the confinement phenomenon and energy value of the Stark

shift.

The rest of the paper is organized as follows. In Sec. 2, we give the exact solution

of the Klein–Gordon oscillator equation with a uniform electric field. The case of

the Dirac oscillator with a uniform electric field is treated in Sec. 3. Some limiting

cases of both solutions are also studied using the special values of the physical

parameters.

2. Klein Gordon Oscillator Equation with a Uniform Electric Field

In regular space, the Klein–Gordon oscillator subject to an electric field ΘKG in

one-dimensional space is defined by

ΘKGψ(x) =
[

(p̂+ imωx̂)(p̂− imωx̂) +m2 − (E − qεx̂)2
]

ψ(x) = 0 , (9)

which can be written as
{

p2 +
(

m2ω2 − ε2
)

x2 + imω[x, p] + 2εEx−
(

E2 −m2
)}

ψ(x) = 0 , (10)

where q is the electrical charge and ε is the intensity of electric field. Note that we

use the units where ~ = c = 1.

The continuity equation can be deduced from the modified Klein–Gordon equa-

tion (9) and its conjugate by the relation,

∂ρ

∂t
+DγJγ = 0 , (11)

with

ρ = i
(

Ψ∗∂tΨ−Ψ∂tΨ
∗
)

, (12)
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and Jγ is the modified current density:

Jγ = −i
(

Ψ∗(1 + γx)
dΨ

dx
−Ψ(1 + γx)

dΨ∗

dx

)

. (13)

In order to solve Eq. (10)), we use the transformation,

u = (1 + γx) , (14)

and using the representations (6) and (3), Eq. (10) becomes
{

d2

du2
+

2

u

d

du
+

(

1

4
− (m2ω2 − ε2)

γ4
+

2εE

γ3
+

(E2 −m2)

γ2

)

1

u2

+

(

2(m2ω2 − ε2)

γ4
+
mω

γ2
− 2εE

γ3

)

1

u
+

(ε2 −m2ω2)

γ4

}

ψ(u) = 0 . (15)

Introducing the notations

δ =
1

4
− (m2ω2 − ε2)

γ4
+

2εE

γ3
+

(E2 −m2)

γ2
,

η =

(

2(m2ω2 − ε2)

γ4
+
mω

γ2
− 2εE

γ3

)

,

ζ =

√

(m2ω2 − ε2)

γ2
with mω > ε ,

(16)

we get

ψ′′ +
2

u
ψ′ +

(

δ

u2
+
η

u
− ζ2

)

ψ = 0 . (17)

To simplify Eq. (17), we introduce

ψ(u) = uσ exp(−ζu)̥(u) , u 7→ y = 2ζu , (18)

where σ is a constant to be determined later. After using (18), the differential

equation (17) will reduce to the equation of the associated Laguerre polynomials

Lk
n(y),
[

y
d2

dy2
+ [(2σ + 2)− y]

d

dy
+

1

y
[σ(σ − 1) + 2σ + δ] +

1

2ζ
[η − 2ζ − 2ζσ]

]

̥(y) = 0 .

(19)

We impose the constraint,

σ(σ − 1) + 2σ + δ = 0 , (20)

to eliminate the coefficient proportional to 1
y
, and







1

2ζ
[η − 2ζ − 2ζσ] = n ,

2σ + 2 = k + 1 .

(21)
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The relation (20) leads to the following expressions for σ:

σ± = −1

2
± 1

γ

√

m2 − E2 +
m2ω2 − ε2

γ2
− 2Eε

γ
. (22)

Among these two solutions, the physically acceptable one is only σ+. To extract the

energy spectrum, we substitute the expression (22) into the first relation of (21).

Then it is straightforward to show that

E± = − εγ

2mω
[(2n+1)Ω− 1]±Ω

√

m2+mω[(2n+1)Ω− 1]− γ2

4
[(2n+1)Ω− 1]2 ,

(23)

with Ω =

√
(m2ω2−ε2)

mω
. We should note that the expression of energy spectrum

contains all corrections of all orders of (εγ)2. This is related to the exact contribution

to the Stark effect in this framework of the deformation. On the other hand, it varies

by the power of n2, which explains the confinement phenomenon. For large values

of n, the square of the energy spectrum (E)2 becomes negative. Thus, in order to

ensure the positivity of the square of the energy, one must impose an upper bound

on the allowed values of n.

Expanding up to the first order in γ2, we obtain

E± = ±Ω
√

m2 +mω[(2n+ 1)Ω− 1]− εγ

2mω
[(2n+ 1)Ω− 1]

∓ γ2Ω[(2n+ 1)Ω− 1]2

8
√

m2 +mω[(2n+ 1)Ω− 1]
. (24)

The first term in (24) is the energy spectrum of the usual Klein–Gordon oscillator

subject to the uniform electric field. The second and the third terms represent the

quantum fluctuations due to the new type of EUP. It is remarkable that the expres-

sion of the energy spectrum contains additional deformed correction terms depend-

ing on the deformation parameter γ, γ2 and with powers in n2, which explains the

phenomenon of confinement. We can see that the energy spectrum in the context

of this deformation is smaller than the energy in the ordinary case.

Solving Eq. (9) along with the relations (18), (19) and (22), we obtain the final

form of the wave function in the former variable x as

ψ(x) = Nnr(1 + γx)
−

1

2
+ 1

γ

√

m2−E2+m2ω2
−ε2

γ2
−

2Eε
γ

× exp

{

− 1

γ2

√

(m2ω2 − ε2)(1 + γx)

}

× L

2

γ

√

m2−E2+m2ω2
−ε2

γ2
−

2Eε
γ

n

(

2

γ2

√

(m2ω2 − ε2)(1 + γx)

)

, (25)

and Nnr is a normalization constant.
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Fig. 1. (E+ versus n) for ε = 0 (Klein–Gordon oscillator).

Fig. 2. (E+ versus n) for ε = 1 (Klein–Gordon oscillator).

We can present our results graphically for some numerical values of the physical

parameters. We will take m = 1 and ω = 10 in our analysis. We will plot the curves

only for E+ as the curves for E− do not show a different physical behavior.

In Fig. 1, we plot the energy levels as a function of quantum number n for

various values of γ and for ε = 0. We see that the values for nonzero γ coincide.

If we take a fixed but nonzero ε as in Fig. 2, we find that the energy behavior is
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Fig. 3. (E+ versus γ) for ε = 0 (Klein–Gordon oscillator).

Fig. 4. (E+ versus γ) for ε = 9 (Klein–Gordon oscillator).

different. The nonzero electric field yields a physical effect on the system. Figures 3

and 4 show the behavior of the energy for varying γ and for a fixed ε (we used

ε = 0 and ε = 9, respectively). Here, we see the effect of γ on the energy behavior

for some fixed n values.

1950218-8

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
9.

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 S
A

N
T

A
 B

A
R

B
A

R
A

 o
n 

12
/1

4/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 10, 2019 12:27 IJMPA S0217751X1950218X page 9

Relativistic oscillators in new type of the extended uncertainty principle

2.1. Some special cases

We can consider some special cases for vanishing γ and ε.

For γ = 0, namely, in the absence of deformation, we replace γ = 0 in (23):

E± = ∓Ω
√

m2 −mω + (2n+ 1)mωΩ . (26)

The case for ε = 0, namely, in the absence of an electric field, implies Ω = 1,

and the expression of the energy spectrum (23) becomes

E± = ±
√

−γ2n2 +m2 + 2nmω . (27)

In the case where γ = ε = 0, we have the pure Klein–Gordon oscillator case. This

limit yields

E± = ±
√

m2 + 2nmω , (28)

which is in agreement with the result of the ordinary case.

3. Dirac Oscillator Equation with a Uniform Electric Field

The Dirac oscillator with a uniform electric field is defined by the expression,58,59

[α(p̂− imωβx̂) + βm]Ψ(x) = (E − qεx̂)Ψ(x) , (29)

where Ψ(x) =
(

φ1(x)

φ2(x)

)

and α, β are the Dirac matrices given by

α = σ2 =

(

0 −i
i 0

)

and β = σ3 =

(

1 0

0 −1

)

. (30)

Note that we are using the units where (~ = c = 1). Using the matrices (30) and

the definition of Ψ(x) in Eq. (29), we obtain the system,
{

(px + imωx)φ2 = (E −m− εx)φ1(x) ,

(px − imωx)φ1 = (E +m− εx)φ2(x) .
(31)

Introducing the notation Π± = px ± imωx and M± = E ±m − εx, the new form

of the system (31) can be obtained as
{

Π+φ2(x) =M−φ1(x) ,

Π−φ1(x) =M+φ2(x) .
(32)

In order to decouple the above system, we write φ2 in terms of φ1,

φ2(x) =
(

M+
)−1

Π−φ1(x) , (33)

and we replace it in the first equation as

Π+
(

M+
)−1

Π−φ1(x) =M−φ1(x) ,
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using

Π+
(

M+
)−1

=
(

M+
)−1

Π+ +
[

Π+,
(

M+
)−1

]

. (34)

Then we multiply the whole equation by M+ on the left to get
[

Π+Π− −M+M− +M+
[

Π+,
(

M+
)−1

]

Π−
]

φ1(x) = 0 , (35)

where [· , ·] is the commutator between two operators.

We note that the first two terms represent exactly the Klein–Gordon oscillator.

We use

ΘKG = Π+Π− −M+M− , (36)

where

ΘKG = (p̂+ imωx̂)(p̂− imωx̂) +m2 − (E − qεx̂)2 , (37)

and the third term characterizes the spinor effect of the particle. Using the defini-

tions, Eq. (35) can be written as
{

ΘKG + (E +m− εx)

[

(px + imωx),
1

(E +m− εx)

]

(px − imωx)

}

φ1(x) = 0 .

(38)

By a direct calculation, Eq. (38) becomes
{

ΘKG − iε(1 + γx)

(E +m− εx)
(px − imωx)

}

φ1(x) = 0 , (39)

where we used Eq. (3).

To solve Eq. (39), we use the change of variable (14). Then we obtain
{

d2

du2
+

(

2

u
+

1

r − u

)

d

du
+
η

u
+
mω

γ2
1

(r − u)
+

δ

u2
+

τ

u(r − u)
− ζ2

}

φ1(u) = 0 ,

(40)

where

δ =
1

4
− (m2ω2 − ε2)

γ4
+

2εE

γ3
+

(E2 −m2)

γ2
,

η =

(

2(m2ω2 − ε2)

γ4
+
mω

γ2
− 2εE

γ3

)

,

τ =

(

1

2
− mω

γ2

)

,

ζ2 =

√

(

m2ω2 − ε2
)

γ2
with mω > ε ,

r =
γ(E +m)

ε
+ 1 .

(41)
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In order to simplify Eq. (40), we introduce

φ1(u) = uσ exp(−ζu)G(u) , (42)

where σ is a constant to be determined letter. We obtain
{

d2

du2
+

(

2σ + 2

u
+

1

r − u
− 2ζ

)

d

du
+

1

u2
(σ(σ − 1) + 2σ + δ)

+
1

u
(−2ζσ + η − 2ζ) +

1

(r − u)

(

mω

γ2
− ζ

)

+
1

u(r − u)
(σ + τ)

}

G(u) = 0 . (43)

To reduce this equation to a class of known differential equation with a polynomial

solution, we need to eliminate the coefficient proportional to 1
u2 . We impose

σ(σ − 1) + 2σ + δ = 0 , (44)

and this leads to the expression

σ± = −1

2
± 1

γ

√

m2 − E2 +
m2ω2 − ε2

γ2
− 2Eε

γ
. (45)

Among these two solutions, the physically acceptable one is only σ+, and the second

solution leads to a nonphysical wave function. We introduce z = u
r
, then Eq. (43)

takes the form
{

d2

dz2
+

(

2σ + 2

z
− 1

z − 1
− 2rζ

)

d

dz

+

(

−2rζσ + rη − 2rζ + σ + τ
)

z
+

(

− rmω
γ2 + rζ − σ − τ

)

z − 1

}

G(z) = 0 , (46)

which is the confluent Heun differential equation.60,61 Let us denote the confluent

Heun function by HC , then the solutions can be written as

G(z) = C1HC(a, b, c, d, e, z) + C2 exp(b)HC(a,−b, c, d, e, z) (47)

with

a = −2

(

γ(E +m)

ε
+ 1

)

√

(

m2ω2 − ε2
)

γ4
,

b =
2

γ

√

m2 +
m2ω2

γ2
−
(

E +
ε

γ

)2

, c = −2 ,

d =

(

γ(E +m)

ε
+ 1

)(

2(m2ω2 − ε2)

γ4
− 2εE

γ3

)

,

e = −
(

γ(E +m)

ε
+ 1

)(

2(m2ω2 − ε2)

γ4
+
mω

γ2
− 2εE

γ3

)

+
mω

γ2
+ 1 .

(48)
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Then, the final expression for φ1(x) is

φ1(x) = (1 + γx)σ exp(−ζ(1 + γx))

[

C1HC

(

a, b, c, d, e,
(1 + γx)

r

)

+ C2 exp(−b)HC

(

a,−b, c, d, e, (1 + γx)

r

)]

. (49)

Using the relation (33) and the expression of φ1(x), we also find

φ2(x) =
−i

E +m− εx

(

(1 + λx)
d

dx
+
λ

2
+mωx

)

φ1(x) . (50)

In order to have a polynomial solution for the confluent Heun equation, we need to

cut the series which are given by the recurrence relation. For a polynomial solution

of degree N , we impose,60

d

a
+
b+ c

2
+N + 1 = 0 . (51)

Using the condition (51) and replacing the parameters a, b and c by their expressions

(48), we finally get the following energy spectrum

E± = −εγΩN
mω

± Ω
√

m2 + 2mωΩN − γ2Ω2N2 with

Ω =

√

(m2ω2 − ε2)

mω
. (52)

In this case, one notes practically the same remarks of the Klein–Gordon oscillator

case. The expression of the energy spectrum contains all corrections of all orders

of (εγ)2. This is related with the exact contribution to the Stark effect in this

deformation framework and it varies with the power of N2, which explains the

confinement phenomenon. For large values of N , the square of the energy spectrum

(E)2 becomes negative and, in order to ensure positivity of the square of the energy,

one must impose an upper bound on the allowed values of N .

Expanding the energy spectrum up to first order in γ2, we obtain

E± = ±Ω
√

m2 + 2mωΩN − εγ
ΩN

mω
∓ γ2Ω3N2

2
√
m2 + 2mωΩN

. (53)

The first term in (53) is the energy spectrum of the usual Dirac oscillator subject

to a uniform electric field. The second and the third terms represent the quantum

fluctuations due to the new type of EUP.

We can also present our results for the Dirac oscillator graphically for some

numerical values of the physical parameters. We will take m = 1 and ω = 10 in

our analysis. We will plot the curves only for E+ as the curves for E− do not show

different physical behavior. One can easily see that the energy behavior is the same

as in the Klein–Gordon oscillator case.
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Fig. 5. (E+ versus N) for ε = 0 (Dirac oscillator).

Fig. 6. (E+ versus N) for ε = 1 (Dirac oscillator).

In Fig. 5, we plot the energy levels as a function of quantum number N for

various values of γ and for ε = 0. We see that the values for nonzero γ coincide.

If we take a fixed but nonzero ε as in Fig. 6, we find that the energy behavior is
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Fig. 7. (E+ versus γ) for ε = 0 (Dirac oscillator).

Fig. 8. (E+ versus γ) for ε = 9 (Dirac oscillator).

different. The nonzero electric field yields a physical effect on the system. Figures 7

and 8 show the behavior of the energy for varying γ and for a fixed ε (we used

ε = 0 and ε = 9, respectively). Here, we see the effect of γ on the energy behavior

for some fixed N values.
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3.1. Some special cases

We will consider some special cases for vanishing γ and ε.

For γ = 0, namely, in the absence of deformation, we replace γ = 0 in (52):

E± = ±Ω
√

m2 + 2mωΩN . (54)

The case for ε = 0, namely, in the absence of an electric field, implies Ω = 1,

and the expression of the energy spectrum (52) becomes

E± = ±
√

m2 + 2mωN − γ2N2 . (55)

In the case where γ = ε = 0, we have the pure Dirac oscillator case. This limit

yields

E = ±
√

m2 + 2Nmω , (56)

which is in agreement with the result of the ordinary case.

4. Conclusion

In this paper, we studied the exact solutions of one-dimensional Klein–Gordon and

Dirac oscillators subject to a uniform electric field in the context of the new type

of the EUP using the displacement operator method.

The energy eigenvalues and eigenfunctions are determined for both cases. In

the Klein–Gordon oscillator case, the wave functions are expressed in terms of

the associated Laguerre polynomials and in the Dirac oscillator case, the wave

functions are obtained in terms of the confluent Heun functions. In the latter case,

the energy eigenvalues are obtained by the polynomial reduction of the confluent

Heun functions.

The analytical expression of the energy spectrum contains corrections of all

orders of (εγ)2. This is related to the exact contribution to the Stark effect in

this deformation framework and it varies with the power of n2, which explains the

confinement phenomenon. For large values of n, the square of the energy spectrum

(E)2 becomes negative and, in order to ensure positivity of the square of the energy,

one must impose an upper bound on the allowed values of n. The energy eigenvalues

are plotted as a function of n for various numerical values of the parameter γ in

order to show our result graphically.

The limiting cases are also studied using the special values of the physical param-

eters for both the Klein–Gordon and Dirac oscillator. It is remarkable that the

results obtained in this context of the displacement operator can be interpreted

as the case of systems with variable masses depending on the position. This study

really needs more details, which will form the goal of a future project.
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Abstract In this letter, we present the exact solution of the three-dimensional Klein–Gordon oscillator on
the (anti)-de Sitter spaces, the energy spectrum and the associated wave functions are extracted and the wave
functions are expressed according to the Jacobi polynomial. On the other hand, we have investigated the three-
dimensional the Klein–Gordon equation with a Coulomb plus scalar potential, we use the perturbation theory
to calculate corrections to the spectrum in this framework of the extended uncertainty principle.

1 Introduction

Quantum field theory is the unfinished coronation of quantum mechanics and the laws of relativity. In spite of the
exploit of its experimental predictions, it remains full of divergences which one could not eliminate except by
methods of regularization mathematics and physical renormalization. Moreover, with the developments of new
theories such as string theory [1], black hole physics [2], and quantum gravity [3], it turns out that a fundamental
minimal length is required in a more unifying approach to existing physical interactions. The minimal length
approach is one that best approximates the explicit computations and generalization of this quantum field theory
to include the gravitational field. In addition, the existence of a minimal length leads to generalized uncertainty
principle(GUP) [4–6] and modifies the canonical Heisenberg algebra to a non-canonical one. Mignemi in
these research works [7,8] showed that it can be derived from the definition of quantum mechanics on a de
Sitter background with a suitably chosen parametrization, that is, the Heisenberg uncertainty principle should
be modified in a (anti)- de Sitter background by introducing corrections proportional to the cosmological
constant ∧ = 3

R2 , where R2 ≺ 0 for de Sitter space-time, and R2 � 0 for anti-de Sitter space-time [9].
This modification was called extended uncertainty principle (EUP), it can be achieved by modifying the usual
canonical commutation relations.

Over past decades, the implications of this (EUP) hypothesis have developed significantly and many works
are examined for quantum mechanics and classical on the background (anti) -de Sitter [9–17].

In this analysis, first we are interested to study two fundamental problems of quantum mechanics in the
context of (anti)-de Sitter spaces :
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– To establish the exact solutions of the (1 + 3)-dimensional Klein–Gordon oscillator.
– To determine the corrections to the spectrum of the Klein–Gordon equation for the coulomb plus scalar

potentials using the perturbation theory. This gives rise to the appearance of a minimal uncertainty in
momentum. On the other, we also study the effect of the deformation and the changes made to relativistic
system in the framework of the extended uncertainty principle.

The outline of this letter is organized as follows: In Sect. 1, we give brief reminder of de Sitter and anti
de Sitter space. In Sect. 2, we study the (1 + 3)-dimensional Klein–Gordon oscillator. In Sect. 3, we present
the perturbative calculation of the spectrum of 3-dimensional hydrogen atom .

2 Review of the Deformed Quantum Mechanics Relation: de Sitter and Anti-de Sitter Spaces

The extended uncertainty principle (EUP) can be obtained from the definition of quantum mechanics on (anti)
de sitter space-time. It is well known that (anti)-de Sitter space-time can be realized as a hyperboloid of equation
ηabζ

aζ b = ±R2 embedded in five-dimensional Minkowski space with coordinates ζ a(a = 0, 1, 2, 3, 4) and
metric ηab = diag (1,−1,−1,−1, ±1), when R → ∞ the de Sitter (dS) invariant special relativity (SR)
will be reduced to ordinary special relativity [18]

ds2 = ηabdζ adζ b = Bμν (x) dxμdxν; μ = ν = 0; 1; 2; 3, (1)

where the parametrization of the hyperboloid is given by projective (Beltrami) coordinates [19,20],

xμ = ζμ

ζ4
(2)

and

Bμν (x) =
(

1 − ηστ xσ xτ

R2

)(
ημν − xμxν

R2

)
, (3)

is Beltrami metric. Note that, the Beltrami coordinate system, is similar to the Minkowski one in a flat space-
time, and the Beltrami de sitter (BdS) space-time is the dS space-time with Beltrami metric. The generators
of de Sitter in Beltrami coordinates and the momentum operators satisfy the following commutation relations
[7,8,21–23]

[
Jμν, Jσρ

] = i
(
ηνρ Jμσ − ηνσ Jμρ + ημσ Jνρ − ημρ Jνσ

)
, (4)

[
Jμν, pρ

] = i
(
ημρ pν − ηνρ pμ

) ; [
pμ, pν

] = i Jμν

R2 , (5)

and
[
xμ, pν

] = i
(
ημν + xμxν

R2

)
; [

xμ, xν

] = 0. (6)

where μ ν = 0,1, 2, 3 and Jμν are the generators of Lorentz transformations given by Jμν = xμ pν − xν pμ

In the theory of SR on (A)dS space-time there are two universal parameters: the speed of light c and the
cosmological constant ∧ [18].

The non-relativistic modified commutation relations leading to the extended commutation relations, is
given by [12]

⎧⎨
⎩
[
X j , Pk

] = i�
(
δ jk + αX j Xk

)
,[

X j , Xk
] = 0,[

Pj , Pk
] = i�αL jk,

(7)

where j, k = 1, 2, 3, L jk = X j Pk − Xk Pj , and α being the constant deformation parameter, where α is a
positive parameter proportional to the cosmological constant or inversely proportional to the square of the
anti-de Sitter radius (α = H2 : H2 is the Hubble rate) [24], and in the limit α −→ 0, we recover the canonical
commutation relations from standard quantum mechanics.
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As the case of ordinary quantum mechanics, the commutation relation (7) lead to the following extended
uncertainty principle (EUP)

(
Xi ) (
Pi ) � �

2

(
1 + α (
Xi )

2) , (8)

which implies the appearance of a nonzero minimal uncertainty in momentum. The minimization of (8) with
respect to 
Xi gives

(
Pi )min = �
√

α, ∀ k. (9)

The most representation of the position and momentum operators obeying relation (7) is given by

Xi = xi ; Pi = �

i

(
δi j + αxi x j

) ∂

∂xi
, (10)

where the operators xi and p j satisfy the canonical commutation relation
[
xi , p j

] = i�δi j . Using the sym-
metrically condition of the operators of position and momentum, the modified scalar product can be written
as

〈φ |ψ〉 =
∫

d3r(
1 + αr2

)2 φ× (r) ψ (r) ; where r =
3∑

i=1

x2
i . (11)

Now, the extended uncertainty principle for the de Sitter space, which can be constructed by replacing
α −→ −α, in this case and contrary to the previous case, we will have,

(
Xi ) (
Pi ) ≥ �

2

(
1 − α (
Xi )

2) . (12)

let’s notice this relation does not give the minimal uncertainty in momentum, we get

− (
Pi )

α�
− 1

α

√
α + (
Pi )2

�2 ≤ (
Xi ) ≤ − (
Pi )

α�
+ 1

α

√
α + (
Pi )2

�2 . (13)

and in the limit (
Pi ) → 0 the space become finite − 1√
α

≤ (
Xi ) ≤ 1√
α

.
A representation of Xi and Pi that satisfies for the de Sitter space, may be taken as

Xi = xi ; Pi = �

i

(
δi j − αxi x j

) ∂

∂x j
. (14)

In the following section, we examine the Klein Gordon oscillator and The Klein–Gordon equation with a
Coulomb plus scalar potential in anti-de Sitter space. we put (� = c = 1)

3 (1+3)-Dimensional Klein Gordon Oscillator in AdS Space

In this section, we are interested in solving the (1 + 3)-dimensional Klein Gordon oscillator, in position
space with deformed commutation relations. In this case, the stationary equation describing the Klein Gordon
oscillator in (1 + 3)-dimension is given by

[(
E2 − m2)− (P + imωr) (P − imωr)

]
� (r) = 0, (15)

where m is the rest mass, and ω is the classical frequency of the oscillator.
Applying the definition of the position and momentum operators reported in Sect. (2), the momentum

squared operator can be expressed as

P2 = −
[(

1 + αr2) ∂

∂r

]2

− 2

r

(
1 + αr2) ∂

∂r
+ L2

r2 (16)
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and the Klein Gordon oscillator equation (15) can be rewritten as the following differential equation:

(
m2 − E2)� =

{[(
1 + αr2) ∂

∂r

]2

+ 2

r

(
1 + αr2) ∂

∂r
− L̂2

r2 − m2ω2r2 + mω
(
3 + αr2)

}
�(r) . (17)

Thus, it’s appropriate to split the energy eigenfunction � into a radial part and an angular part as:

� (r) = Rn,� (r) Y�,m (θ, ϕ) , (18)

where Yn,� are the eigenfunction of the angular part.

L̂2Y�,m (θ, ϕ) = � (� + 1)Y�,m (θ, ϕ) (19)

This allows us to rewrite Eq. (17) as
[[(

1 + αr2) d

dr

]2

+ 2

r

(
1 + αr2) d

dr
− � (� + 1)

r2 − m2ω2r2 + mωαr2 + E2 − m2 + 3mω

]
Rn,� (r) = 0.

(20)

To solve this equation, we begin by making the following change of variable
√

αρ = tan−1 √
αr, (21)

which maps the interval r ∈]0,∞[ to ρ ∈]0, π
2
√

α
[ and brings Eq. (20) to the following form

[
d2

dρ2 + 2
√

α

tan
(√

αρ
) d

dρ
− α� (� + 1)

tan2
(√

αρ
) − mω

(mω

α
− 1
)

tan2 (√αρ
)+ E2 − m2 + 3mω

]
Rn,� (ρ) = 0.

(22)

To eliminate the first derivative, we introduce the following ansatz

Rn,� (ρ) = e
−√

α
∫ ρ dζ

tan(
√

αζ) gn,� (ρ) , (23)

after some manipulation, we obtain
[

d2

dρ2 − α� (� + 1)

tan2
(√

αρ
) − mω

(mω

α
− 1
)

tan2 (√αρ
)+ E2 − m2 + 3mω + α

]
gn,� (ρ) = 0. (24)

Introducing now the following change of function

gn,� (ρ) = sin�+1 (√αρ
)

cosσ
(√

αρ
)
Fn,� (ρ) , (25)

where σ is a constant to be determined letter. By means of the substitution given in Eq. (25), the last differential
equation (24) take the following form:

[
d2

dρ2 + 2
√

α
(

(�+1)

tan(
√

αρ)
− σ tan

(√
αρ
)) d

dρ − ασ (2� + 3)

+α
[
σ (σ − 1) − mω

α

(mω
α

− 1
)]

tan2
(√

αρ
)+ E2 − m2 + 3mω − �α

]
Fn,� (ρ) = 0. (26)

To eliminate the term tan2
(√

αρ
)

by demanding

σ (σ − 1) − mω

α

(mω

α
− 1
)

= 0, (27)

then it leads to the following expression of σ

σ+ = mω

α
, σ− = 1 − mω

α
. (28)
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Among these two solutions, the physically acceptable one is only σ+, the second solution leads to a non
physically acceptable wave function. Then Eq. (26) simplifies to

[
d2

dρ2 + 2
√

α

(
� + 1

tan
(√

αρ
) − mω

α
tan
(√

αρ
)) d

dρ
− 2�mω + E2 − m2 − α�

]
Fn,� (ρ) = 0. (29)

At this stage, we introduce another change of variable defined by

η = 2 sin2 (√αρ
)− 1. with − 1 � η � 1 (30)

the Eq. (29) reduces to
[(

1 − η2) d2

dη2 +
(
� − mω

α
+ 1 −

(
� + mω

α
+ 2
)

η
) d

dη
+ E2 − m2 − α� − 2�mω

4α

]
Fn,� (η) = 0. (31)

which is exactly the Jacobi polynomials differential equation P(a,b)
n (η) whose parameters a and b are given

by imposing the following constraint

E2 − m2 − α� − 2�mω

4α
= n (n + a + b + 1) , (32)

a = mω

α
− 1

2
; b = � + 1

2
. (33)

where n is non-negative integer and the solution can be written in terms of Jacobi polynomials as

Fn,� (η) = P

(
mω
α

− 1
2 ,�+ 1

2

)
n (η) . (34)

Using the the former variable r , we will have the following final form of the wave function � :

�n,� (r) = C r�

(
1 + αr2

)mω
2α

+ �
2

P

(
mω
α

− 1
2 ,�+ 1

2

)
n

(
αr2 − 1

1 + αr2

)
Y�,m (θ, ϕ) , (35)

where C is the normalization constant.
To determine the expressions of the energy spectrum of Klein Gordon oscillator , using the condition (32)

and replacing the parameters a, and b by their expressions (33), we finally get the following result

E±AdS
n,l = ±

√
m2 + 2mω (2n + �) + α [4n (n + l + 1) + l], (36)

where ± denotes the positive (negative) energy solutions associated respectively with the particle and the
antiparticle for relativistic quantum systems.

Notice that the energy levels depend on the quantum number n and n2 and for large n it is asymptotic to

E±AdS
n → ±2

√
αn, (37)

This effect is due to the modification of the Heisenberg algebra. As a result, we remark that for a fixed
value of n, the energy E+AdS

n,l increases monotonically with the increase of the EUP parameter α. Expanding
the expression of the energy levels to first order in α, we obtain

E±AdS
n,l = ±

√
m2 + 2mω (2n + �)

(
1 + α

2

(4n (n + l + 1) + l)(
m2 + 2mω (2n + �)

)
)

(38)

The first term is the energy spectrum of the ordinary 3d Klein–Gordon oscillator, while the second term is
the corrections brought about by the existence of nonzero minimal uncertainty in momentum, and when we
study the limit α → 0, we obtain

E±AdS
n,l = ±

√
m2 + 2mω (2n + �) (39)
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which is the same result in ordinary case. Before finishing this section, let us see the influence of the EUP in
dS on the energy eigenvalues (α → −α) and by the same steps and same techniques, we arrive

E±dS
N , j = ±

√
m2 + 2mω (2n + �) − α [4n (n + l + 1) + l], (40)

In this case, for large values of n, the square of the energy spectrum
(
EdS
n,μ

)2
becomes negative. In order

to ensure positivity of the the square of the energy, one must impose an upper bound on the allowed values n
and l.

4 The Klein–Gordon Equation with a Coulomb Plus Scalar Potential in AdS Space

The hydrogen atom is a fundamental problem of quantum mechanics; it is of considerable importance in
atomic and molecular physics. it allows to understand the spectra of hydrogenoids and to explain the structure
of the energy levels and the spectra of the atoms in the case of models with independent electrons or approach of
an average field. Furthermore, the hydrogen atom has grown enormously;especially in the context of deformed
algebras and several papers have been studied. In non relativistic case, the spectrum and eigenfunctions in
the momentum representation for 1D Coulomb-like potential with deformed Heisenberg algebra are found
exactly in [25,26], for higher dimensions, the problem becomes complicated, only perturbative solutions have
been found [27–30]. On the contrary, in the case of relativistic quantum mechanics, no study is presented,
accordingly, our attempt through this letter will be addressed the problem in question for the case of the Klein
Gordon equation in the framework of anti-de Sitter spaces.

To study the eigenvalue problem for hydrogen atom in 3-dimensional case we start considering a standard
Hamiltonian: {

P2 + (M + Vs(r))
2 − (E + Vv(r))

2}ψ(r) = 0 (41)

where M and E denote the mass and the energy of the particle, respectively and r =
√∑3

j=1 X2
j and P =√∑3

j=1 P2
j satisfy deformed commutation relation (7). The Coulomb potential and the scalar potential are

taken as

Vs(r) = −Vs
r

Vv(r) = −Vv

r
(42)

The scalar potential is added to the mass term in the Klein Gordon equation and may be understood as an
effective position-dependent mass, which is of considerable significance in various areas of physics, citing for
instance quantum well and quantum dots [31–33], in the description of electronic properties and band structure
of semiconductor heterostructures [34,35], …etc.

Now, we apply the definition for X j and Pj (10) reported in Sect. 2, the momentum squared operator (16)
can be expressed

P2 = − (1 + αr2)2 ∂2

∂r2 − (1 + αr2) 2αr
∂

∂r
− 2

r

(
1 + αr2) ∂

∂r
+ L2

r2 , (43)

if we expand (43) at the first order in α, we have

P2 = − (1 + 2αr2) ∂2

∂r2 − 2

r

(
1 + 2αr2) ∂

∂r
+ L2

r2 + O (α2) , (44)

therefore, the Klein Gordon equation (41) can be written as follows{
− (1 + 2αr2) ∂2

∂r2 − 2

r

(
1 + 2αr2) ∂

∂r
+ L2

r2 +
(
M − Vs

r

)2

−
(
E + Vv

r

)2
}

ψ(r) = 0, (45)

or as follows ;{
−
(

∂2

∂r2 + 2

r

∂

∂r

)
− 2αr2

(
∂2

∂r2 + 2

r

∂

∂r

)
+ L2

r2 +
(
M − Vs

r

)2

−
(
E + Vv

r

)2
}

ψ(r) = 0, (46)
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and using this replacement

∂2

∂r2 + 2

r

∂

∂r
= 1

r

∂2

∂r2 r, (47)

the Eq. (46) becomes
{

−
(

1

r

∂2

∂r2 r

)
− 2αr2

(
1

r

∂2

∂r2 r

)
+ L2

r2 +
(
M − Vs

r

)2

−
(
E + Vv

r

)2
}

ψ(r) = 0. (48)

To solve this equation, using this separate form ;

ψ(r) = Rα(r)

r
Yl,m (θ, ϕ) . (49)

where Yl,m (θ, ϕ) are spherical harmonics, eigenvectors of the orbital kinetic moment

L2Yl,m (θ, ϕ) = � (� + 1) Yl,m (θ, ϕ) =
(
k2 − 1

4

)
Yl,m (θ, ϕ) (50)

with k = l + 1
2 . Substitution (49) and (50) into Eq. (48), We obtain the radial equation of the Klein–Gordon

equation in AdS space:
[
− d2

dr2 + k2 + V 2
s − V 2

v − 1
4

r2 + (M2 − E2)− 2 (MVs + EVv)

r
− 2αr2

(
d2

dr2

)
+ O (α2)

]
Rα(r) = 0,

(51)

which can be written as [
H0 + αW + O (α2)] Rα(r) = 0. (52)

with H0 represents the undisturbed Hamiltonian corresponds to the ordinary case α = 0 of the Klein–Gordon
equation for Hydrogen atom with scalar potential given by

H0 = − d2

dr2 + k2 + V 2
s − V 2

v − 1
4

r2 + (M2 − E2)− 2 (MVs + EVv)

r
(53)

and W is the disturbed Hamiltonian

W = −2r2 d2

dr2 . (54)

To simplify the shape of H0 and W , introducing this notation

β = EVv + MVs√
M2 − E2

, ν =
√
k2 + V 2

s − V 2
v − 1

2
and a =

√
M2 − E2, (55)

we will then have

H0 = − d2

dr2 + ν (ν + 1)

r2 + a2 − 2aβ

r
(56)

and the new the expression form for W ,

W = −2ν (ν + 1) + 2r2 (H0 − a2)+ 4raβ. (57)

We have used (53).
In order to study the influence of this deformation on the energy levels of the hydrogen atom we will

consider the term αW as perturbation in ordinary quantum mechanics. Therefore, the perturbation theory can
be used to calculate the correction to the energy levels of the hydrogen atom in the first-order in α and to avoid
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complex spectra, subsequently, we consider the case of the weak Coulomb potential such that k2+V 2
s −V 2

v > 0,
otherwise the solution becomes oscillatory .

Now, for α = 0, the exact solution of the ordinary Klein Gordon equation for Hydrogen atom can be
found in [36,37]. The eigenvalues and the corresponding normalized eigenfunctions expressed according to
Laguerre’s polynomial are given by

R0
n′ν(r) = Nn′l

n′!�(2ν + 2)

�(2ν + 2 + n′) (2ar)ν+1 e−ar L2ν+1
n′ (2ar) (58)

where Nn′l is normalization constant determined by this condition∫
R0∗
n′ν(r)R

0
n′ν(r)dr = 1. (59)

By using the recursion relation for Laguerre polynomials [38]

xL2ν+1
n = 2(n + ν + 1)L2ν+1

n − (n + 1)L2ν+1
n+1 − (n + 2ν + 1)L2ν+1

n−1 . (60)

and

d2
n =

∫
xαe−x Lα

n (x) Lα
n (x) dx = �(n + α + 1)

n! (61)

where d2
n is the square of the norm of Lα

n (x), the normalized radial functions are

R0
n′ν(r) =

√
an′!

(ν + n′ + 1) �(2ν + 2 + n′) (2ar)ν+1 e−ar L2ν+1
n′ (2ar) (62)

and the corresponding energy spectrum, eigenvalues of the radial part of the Klein–Gordon equation with a
Coulomb potential and scalar potential is deducted by this condition β − ν − 1 = n′.

Eα=0±
n,� = M

⎧⎨
⎩− VsVv

V 2
v + β2 ±

[(
VsVv

V 2
v + β2

)2

− V 2
s − β2

V 2
v + β2

] 1
2

⎫⎬
⎭ , (63)

or

Eα=0±
n,� = M

⎧⎨
⎩− VsVv

V 2
v + (ν + n − l)2 ±

[(
VsVv

V 2
v + (ν + n − l)2

)2

− V 2
s − (ν + n − l)2

V 2
v + (ν + n − l)2

] 1
2

⎫⎬
⎭ , (64)

where we have introduced the principal quantum number : n = n′ + l + 1.
Now, to determine the correction of the energy levels associated with the disturbed Hamiltonian W (57)

due to the anti-de sitter space-time, we use the first-order perturbation theory in the deformation parameter α,

αE (1)
n = α

∫
R0∗
nl (r) (W ) R0

nl(r)dr

= α
[
−2ν (ν + 1) < r (0) > +4aβ < r (1) > −2a2 < r (2) >

]
(65)

where

< r (m) >

∫
rm R0∗

nl (r)R
0
nl(r)dr. (66)

For the calculation of expectation of value of < r (m) >, we take advantage of the properties (60) and (61)
and a straightforward and long calculation leads to⎧⎪⎪⎪⎨

⎪⎪⎪⎩

< r (0) >= 1

< r (1) >=
∫
r R0∗

nl (r)R
0
nl(r)dr = 1

2a(ν+n−l)

[
3(ν + n − l)2 − ν (ν + 1)

]

< r (2) >=
∫
r2R0∗

nl (r)R
0
nl(r)dr = 1

2a2

[
5(ν + n − l)2 + 1 − 3ν (ν + 1)

] (67)
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Then the first order of the perturbation theory takes this form

αE (1)
n = α

[
(ν + n − l)2 − ν (ν + 1) − 1

]

= α

{(√
k2 + V 2

s − V 2
v − 1

2
+ n − l

)2

−
(√

k2 + V 2
s − V 2

v − 1

2

)(√
k2 + V 2

s − V 2
v + 1

2

)
− 1

}
(68)

which represents the quantum fluctuations due to the extended uncertainty principle on (anti) -de sitter space-
time, depending on the powers in n2, explains the phenomenon of confinement and the expression of the
hydrogen atom energy levels is modified as

AdS Eα±
n,� = M

⎧⎪⎨
⎪⎩− VsVv

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n − l
)2

±
⎡
⎢⎣
⎛
⎜⎝ VsVv

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n − l
)2

⎞
⎟⎠

2

−
V 2
s −

(√
k2 + V 2

s − V 2
v − 1

2 + n − l
)2

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n − l
)2

⎤
⎥⎦

1
2
⎫⎪⎪⎬
⎪⎪⎭

,

+ α

{(√
k2 + V 2

s − V 2
v − 1

2
+ n − l

)2

−
(√

k2 + V 2
s − V 2

v − 1

2

)(√
k2 + V 2

s − V 2
v + 1

2

)
− 1

}
+ O (α2) . (69)

In this last expression of the spectrum (69), we notice that the spectrum energy on anti-de Sitter is bigger than
the energy in ordinary case. Before concluding this paragraph, we would like to see the influence of space
dS on the eigenvalues of the system (α → −α). By the same steps, the energy eigenvalues of the system will
have the following form

ds Eα±
n,� = M

⎧⎪⎨
⎪⎩− VsVv

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n − l
)2

±
⎡
⎢⎣
⎛
⎜⎝ VsVv

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n − l
)2

⎞
⎟⎠

2

−
V 2
s −

(√
k2 + V 2

s − V 2
v − 1

2 + n − l
)2

V 2
v +

(√
k2 + V 2

s − V 2
v − 1

2 + n − l
)2

⎤
⎥⎦

1
2
⎫⎪⎪⎬
⎪⎪⎭

,

− α

{(√
k2 + V 2

s − V 2
v − 1

2
+ n − l

)2

−
(√

k2 + V 2
s − V 2

v − 1

2

)(√
k2 + V 2

s − V 2
v + 1

2

)
− 1

}
+ O (α2) . (70)

In this case, we can see that the energy spectrum (70) on the de Sitter space is smaller than the energy in
ordinary case.
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5 Conclusion

In this contribution, we have investigated the three-dimensional Klein–Gordon oscillator and the Klein–Gordon
equation with a Coulomb plus scalar potential in the context of quantum deformations for the (anti)- de Sitter
algebras. For the 3-dimensionals Klein–Gordon oscillator, according to the symmetry of the system, we used the
adequate radial representation and some change of variables, the problem has been converted to a differential
equation of type Jacobi polynomials. The energy eigenvalues and their corresponding eigenfunctions are
exactly and analytically obtained . For the case of the Klein–Gordon equation for hydrogen atom, the problem
is complicated and in order to determine energy spectra, the perturbation theory has been applied to calculate
the correction to the energy levels in the first-order in α. In both problem, we show that the spectrum energy
on anti-de Sitter is bigger than the energy in ordinary case contrariwise in ds space , the energy spectrum is
smaller than the energy in ordinary case.
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Abstract

Our thesis is essentially composed of two parts. 

    - In the first part, some problems  are presented via the direct method of equations  such: 

    In the context of new type of the extended uncertainty principle, using the displacement 

operator method, the exact solution of the Klein Gordon equation is given in the following 

cases: in a one dimensional box, with linear vector  and scalar potentials  and in mixed 

Coulomb-type vector  and scalar potentials. The one-dimensional Klein-Gordon and Dirac 

oscillators subject to a uniform electric field. 

    In the context of the deformed Snyder-de Sitter model, the three-dimensional Klein-

Gordon oscillator  and the Klein-Gordon  equation with a Coulomb plus scalar potential are 

traited. 

    - The second part is devoted especially to supersymmetric path integrals approach within 

the framework of the EUP to establish the function of Green for the oscillator of Dirac to (1 

+ 1) dimension. Following the global representation and Schwinger's proper time method, 

Green's causal function is obtained. By an adequate choice of the discretization of the 

measure and of the action, the appropriate quantum fluctuations are determined, and with 

the help of appropriate transformations, the propagator has converted to the case of the 

standard problem of the Poschl-Teller potential. 

    In all cases, the energy spectra and the corresponding wave functions are exactly and 

analytically determined and the obtained results agree with those of the literature . Also 

the limiting cases are considered. 

    Keywords: Deformed algebra, Path integral approach,  Minimal length, Displacement 

Operator, The Translation Operator, Klein-Gorden and Dirac Oscillateurs.



Résumé 

 Notre thèse est composée essentiellement de deux parties. 

    - Dans la première partie, certains problèmes de la mécanique quantique realtiviste avec 

et sans spin sont présentés via la méthode directe des équations ;tels que: 

    Dans le contexte d'un nouveau type de principe d'incertitude étendue, en utilisant la 

méthode de l'opérateur de déplacement, la solution exacte et analytique de l'équation de 

Klein Gordon est donnée dans les cas suivants  :  

    Particule confinée dans une boite, potentiels scalaire et vectoriel de types lineaires et 

Coulombiens. Les oscillateurs Klein-Gordon et Dirac soumis à un champ électrique 

uniforme. 

    Dans le contexte du modèle déformé de Snyder-de Sitter, l'oscillateur tridimensionnel de 

Klein-Gordon et l'équation de Klein-Gordon en présence du potentiel Coulombien sont 

traités. 

    - Alors la deuxième partie est consacrée spécialement à l'approche des intégrales de 

chemins supersymétriques dans le cadre de l'EUP pour établir la fonction de Green pour 

l'oscillateur de Dirac à (1+1) dimension. Suite à la représentation globale et la méthode du 

temps propre de Schwinger, la fonction causale de Green est obtenue. Par un choix 

adéquat de la discrétisation de la mesure et de l'action, les fluctuations quantiques 

appropriées sont déterminées, et à l'aide de transformations appropriées, le propagateur 

s'est converti au cas du problème standard du potentiel de Poschl-Teller. 

 Dans tous les cas, les spectres énergétiques et les fonctions d'onde associées sont 

exactement déterminés et concordent avec ceux de la littérature. Les cas particuliers sont 

aussi considérés. 

    Mots-clés : Algèbre déformée, Approche des intégrales de chemins supersymétriques, 

Longueur minimale, Opérateur de déplacement, Klein-Gorden et Dirac Oscillateurs. 



 :الملخص

.تتكون أطروحتنا بشكل أساسي من جزأين

الكم النسبي مع وبدون عزم اللف بواسطة طريقة المعادلات  في الجزء الأول ، يتم عرض بعض مسائل ميكانيك  - 

 :المباشرة ؛ مثل

، تم تقديم الحل الدقيق والتحليلي لمعادلة  الممتد و باستعمال طريقة مؤثر الانسحاب في سياق نوع جديد من مبدأ الشك     

 :كلاين جوردون في الحالات التالية

كلاين جوردون  هزازي. كولومالمن النوعين الخطي و العددي والشعاعيفي صندوق ، الكمون الجسيمات محصورة      

.خاضعة لمجال كهربائي ثابت وديراك

كلاين  ثلاثي الأبعاد ومعادلة هزاز كلاين جوردون المشوه ، تمت معالجةسنايدر دو سير  في سياق نموذج و 

.كولوم نوعكمون من الفي وجود  جوردون

 مبدأ الشك الممتد في إطار ةتم تخصيص الجزء الثاني بشكل خاص لمقاربة تكاملات المسارات فائقة التماثل كما     - 

لشوينغر ، تم الحصول  شامل وتقنية الزمن الذاتيباتباع التمثيل ال(. 1+  1)البعد  هزازديراك علىل جرين دالة لتشكيل

تصحيحات الكمية المناسبة ، ال إيجاد، تم  فعلقياس والدير المن خلال الاختيار الأنسب لتق. لسببيةعلى دالة جرين ا

  .   ةالعادي بوشل تيلار كمون ، تحول الناشر إلى حالة  وبواسطة التحولات الملائمة

في  تم تحديد اطياف الطاقة و الدوال الموجية المرفقة بشكل دقيق و التي تتفق مع النتائج الموجودةفي كل الحالات  

.و اخيرا تم النظر في الحالات الخاصة.  المراجع

مؤثر الانسحاب ، الجبر المشوه ، نهج تكاملات المسارات فائقة التناظر ، الحد الأدنى للطول ، : الكلمات المفتاحية

.جوردن وديراك-كلاين هزازات
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