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A B S T R A C T

In this thesis, we study several applications of black hole (BH) physics in the presence of
two different deformed metrics. This deformation is implemented by the non-commutative
(NC) gauge theory of gravity. The first part of the thesis is devoted to obtain the deformed
metric in the presence of non-commutativity for two black holes (BHs), which are the
Schwarzschild and Reissener-Nordström (RN) metrics. The use of the NC gauge theory
affects the geometry of BH and their properties, such as singularity, static limit surface,
and event horizon. The second part is devoted for a detailed investigation of the particle
motions around a NC BH. Two cases are studied for each deformed metric. Firstly, we
study the motion of both massless and massive test particles in the NC Schwarzschild
spacetime for two kinds of motions: free fall and circular motion. For free-fall motion,
these two types of particles take an infinite time to reach the NC singularity. Moreover,
for the circular motion, the non-commutativity predicts a new stable circular orbit (SCO)
near the event horizon, which is not allowed in the commutative case. In the third part of
this thesis, we investigate in detail the effect of non-commutativity on the BH evaporation
process for different scenarios. In the first one, we study in detail the thermal proprieties
of the NC Schwarzschild BH in the context of the classical BH thermodynamics, where
we predict four important results, which are a new scenario of BH evaporation, a new
fundamental length, and a remnant BH in the final stage. We show then similarity between
the NC Schwarzschild BH and the Anti-de-Sitter (AdS) RN one in the grand canonical
ensemble. The second scenario is devoted to the investigation of the thermal stability and
the phase transition of this BH inside a thermal spherical cavity in the presence of this
geometry, in which this NC BH shows a two-coexistence phase transition. In the final
scenario, we present a detailed study of the NC effect on Hawking radiation, using the
quantum tunneling process for two cases. In the first one, we investigate pure thermal
radiation, where we show an equivalence between this approach and the thermodynamical
one, and then we show the effect of this geometry on the density number of particles that
are emitted from the NC Schwarzschild BH. Secondly, we investigate the non-thermal
radiation in the presence of this geometry, and then we check the correlation between two
successive particle emissions, in which the non-commutativity doesn’t preserve only the
correlation in this geometry but also reduces it compared to the commutative case, which
allows the information to come out with Hawking radiation. Finally, we show the effect of
this geometry on the BH evaporation process.

Keywords: Non-commutative gauge theory, black hole physics, geodesic equa-
tion, thermodynamical quantities, Hawking radiation, evaporation process.
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I N T R O D U C T I O N

General relativity (GR) theory is one of the foundations of modern physics and one of
the major scientific discoveries at the beginning of this century; it describes one of the
four fundamental interactions in nature, known by gravity, and this theory provides an
excellent relativistic description of this interaction. This theory was proposed for the first
time by Albert Einstein in 1915. The success of this theory is due to its direct and indirect
prediction of some phenomena, such as the four classical tests of GR [1], which were
the prediction of the anomaly in Mercury’s orbit (the periastron advance of orbit), the
deflection of light around massive objects, the red-shift, and the time delay. More modern
predictions, such as the detection of gravitational waves (GW) by the collaboration of the
LIGO/Virgo experiment in 2016 [2] and the recent indirect observation of a supermassive
BH for the first time in the center of the galaxy M87 by the event horizon telescope in 2019
[3].

The BHs are considered the most mysterious bodies in the universe. Unfortunately, noth-
ing can escape its gravity, and that makes direct observation of these objects difficult. The
only observation is the indirect one, for example, the motion of the stars around the center
of the galaxy, such as the star S2 around the supermassive BH Sagittarius A (SgrA*) in
the Milky Way galaxy [4–7], where we only observe the effect of their gravitational field
on the stars orbits. Also, it is possible to detect these celestial objects through their inter-
action. For example, a pair of BH can emit gravitational radiation, which is observed as
an GW, or detect the radiation emitted from their accretion disk and also their shadow,
etc. The first theoretical prediction of the existence of BHs was established by K. Schwarz-
schild in 1916, which is a vacuum solution of Einstein’s equations with static spherical
symmetry. After the Schwarzschild solution, several solutions were proposed, such as the
Reissner-Nordström (RN) RN, which is also a vacuum solution with a static spherical
symmetry, and the more realistic Kerr and Kerr-Newman solutions, which describe a ro-
tating uncharged and charged BH, respectively, etc. In this thesis, we focus only on the
Schwarzschild and RN solutions.

The geodesic motion of a test body around a compact object has great importance in as-
trophysics to understand the physics and geometry of these objects, such as neutron stars,
BHs, etc. The motion of different types of particles around a BH reveals a lot to understand
their nature [8–32]. Moreover, the classification of stable and unstable orbits is interesting
to describe the geometrical properties of spacetime around massive objects. Among the
various methods for analyzing the stability of geodesics, the Lyapunov exponents [33]
has a great application in this context, in which it is considered a bridge between the non-
linear GR and the non-linear dynamics. The Lyapunov exponent measures the average rate
of separation between two nearby geodesics in phase space [34–44], where the instability
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of orbits is expressed by the real Lyapunov exponent, while the marginal stable and the
stable ones are expressed by the zero and imaginary Lyapunov exponents, respectively.

Although GR predicts BHs, it fails miserably in explaining or studying the center of
these objects, in which a spacetime singularity appears, where the geometry at this point
diverges at infinity, and this physical singularity is considered as a quantum object. Add
to that the failure of this theory to describe gravity signals at the quantum scale. These
issues lead physicists to look beyond the GR theory for solving the above problems and
search for a new theory that enables them to describe gravity effect at the quantum level.
In this context, quantum gravity (QG) theory is one of the biggest modern problems in
physics and one of the largest and most active research areas. At the end of the last century,
there were several theories that emerged to solve these issues. Among the most promising
theories are string theory (ST) [45, 46], loop quantum gravity (LQG) [47, 48], as well as
super-gravity [49–52], without forgetting the semi-classical approach [53]. Unfortunately,
none of these theories provide a complete theory of QG, despite their impressive applica-
tions and theoretical results, and to this day, none of them has been proved experimentally.
We must point out that looking for a theory of QG results from the idea of unifying the
four fundamental interactions in one single gauge theory. As we know, the classical theory
of GR is not a gauge theory. In this context, the first gauge theory of gravity was pro-
posed by R. Utiyama in 1956 [54], which is constructed by analogy to the gauge models
of internal symmetries (U(1), SU(2), ...etc.), where the gauge theory of gravity is based
on the spacetime symmetry [55–58]. In 2002, G. Zet et al. [59] published an elegant gauge
theory of gravity in the Poincaré group, based on a 4-dimensional spherical Minkowski
metric, and the gauge fields in this theory are described by four tetrad fields ea

µ and six
spin-connections ωab

µ , where these gauge potentials are generated by a point-like particle
source of mass m. The solution of the equations raised from this gauge gravity reproduced
the Schwarzschild one for a vacuum solution. Then, G. Zet et al. generalized their work to
the de-Sitter (dS) SO(4, 1) group [60], and the solution for vacuum became the Schwarz-
schild with cosmological constant solution [60, 61]. In this thesis, we will use this theory
as a mathematical background for our calculations.

In the semi-classical approach context, the first mechanism that unifies quantum me-
chanics and gravity near the event horizon of BH was proposed by S. Hawking in 1975
[53], and it’s considered the first bridge to the QG theory, where this discovery changed
our idea about the BHs, in which these objects can emit radiation and thus evaporate
[53, 62], similarly to black body radiation. This phenomenon is called Hawking radiation.
Also these objects are considered a perfect thermodynamical system, and they are sub-
ject to the thermodynamic laws [63] in a similar way to the classical one. Later, the BH
thermodynamic became a large part of the research area of the BH phenomenology, [62,
64–75],...etc., and that enhanced our comprehension about this relation between quantum
mechanics and gravity, and deepened our understanding about BHs, which is the aim of
this thesis.

It is worth noting that, after Hawking’s original derivation of BH radiation, several
approaches were derived to deduce Hawking radiation. Amongst them is the quantum
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tunneling process with its two methods: the null geodesic method [76] and the Hamilton-
Jacobi one [77]. Also, the use of anomaly mechanisms [78–80] near the event horizon pro-
vides a way to reproduce Hawking radiation. In this thesis, we will focus on the tunneling
process using the null geodesic method, which was initiated by Kraus and Wilczek [81]
and developed by Parikh and Wilczek [76, 82, 83]. This approach describes Hawking ra-
diation as a quantum tunneling process within a semi-classical framework. In a variety of
BH with static spherical symmetry, this technique has proven to be invaluable for studying
Hawking radiation [84–98].

In the semi-classical approach, Hawking demonstrated that the pure thermal spectrum
of the Schwarzschild has a temperature, which relates all fundamental constants of physics
in one single formula: TH = h̄ c3/(8πGkB M). It is clearly evident that this expression has
a divergent quantity in the final stage of evaporation, M → 0. Thus, the final stage of
Schwarzschild BH evaporation is not clear in the classical theory, and the explanation
problem requires a QG theory. In this context, many theories emerged to solve this prob-
lem, which studied the effect of some QG models on BH thermodynamics in different
scenarios, such as rainbow gravity (RG) [99–104], and quantum deformation effect, which
predicts a minimal length (as an example, the generalized uncertainty principle (GUP),
the extended uncertainty principle (EUP), etc.) [105–120] in which these models predict a
minimal length and are expected to be in the order of the Planck scale, which acts as a nat-
ural cutoff to eliminate the divergence behavior. In the second scenario, there is an interest
in studying the thermodynamic stability of BH in the presence of boundary conditions,
where the BH is surrendered by a isothermal spherical cavity [70, 71], and in the presence
of the QG effect on this BH [73, 75, 102–104, 118, 121, 122], to maintain the thermal stability,
and the results look promising. In addition to previous models of QG, another model of
quantizating gravity has been proposed.

In 1994, Alain Connes presented a new idea in the treatment of space geometry [123], in
which he adopted the same concept as quantum mechanics concerning the commutation
relations between observables (position, momentum, energy, etc.) and applied it to the
spacetime coordinates, which led to the so-called NC geometry. Lately, this theory has
become one of the most promising in physics to solve the problems of modern physics
concerning the quantization of gravity. The application of this geometry in physics predicts
a new minimal length, which is expected to be on the Planck scale. At this scale, the gravity
effect is significant, which makes this theory one of the most promising to describe QG. The
idea of this geometry is simple, in which the quantization of spacetime leads to quantizing
gravity, and that leads to the concept of QG. The QG effects can be considered negligible in
low energy limits, but they must be taken into account in the powerful gravitational field
of a BH. In the beginning of this century, there has been a lot of interest in the study of
the NC geometry in different fields of physics, for example, the standard model of particle
physics [124–126], ST [127], quantum Hall effect [128, 129], quantum fields theory [130,
131], and even the GR [119, 132, 133],...etc., which is the aim of this thesis. Recently, there
has been interest in studying the geodesic in the presence of non-commutativity [133–144],
as well as their effect on the thermodynamic properties of BH and their thermal stability
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[132, 145–152], and it’s useful with new mechanism as the tunneling process [153–159],
which show promising results in solving the issues mentionned above.

This geometry is also mainly motivated by string theory, in which non-commutativity
emerges naturally between the endpoints of the open string in a B-field background with
D-branes [160]. In the same paper [160], N. Seiberg and E. Witten established a gauge
transformation that gives an important correspondence between the NC gauge fields and
the ordinary gauge ones and is known by the SW map. The application of this map in grav-
ity was given in [161], in which the author obtained a deformed Einstein’s gravity, where
that is due to gauging the NC dS SO(4, 1) group and contracted to the Poincaré1 group
ISO(3, 1), and in this theory the gravitational potentials are given by 10 gauge potentials,
four deformed tetrad fields êa

µ, and six deformed spin-connection fields ω̂ab
µ . Through the

use of this theory together with the commutative gauge theory that we mentioned above
[60], we obtained an NC gauge theory of gravity, which has shown interest among physi-
cists [149–151, 162–166]. Our thesis will be in this context.

thesis outline

This thesis was based on my works [167–173], which are focused on studying various
aspects of BH physics in the presence of non-commutativity. We summarize some notable
results of these studies. In this thesis, we obtain a deformed metric for Schwarzschild
BH and RN in the context of NC gauge theory of gravity. The non-commutativity affects
some geometrical properties of these BHs, shifts the singularity at a finite radius, increases
the event horizon, and adds a new static limit surface. Then we investigate in detail the
geodesic motion of a few types of particles in these metrics, and then we observe a new
type of motion near the event horizon, which is not allowed in the commutative case.
Also, the massless particles present a new stable photon sphere near the event horizon.
Finally, we investigate the thermodynamic properties of NC Schwarzschild BH and their
thermal stability in different scenarios, where this geometry presents a new scenario of
evaporation, predicts a new fundamental length at the Planck scale, presents a solution to
the information paradox, and predicts a remnant BH in the final stage of evaporation.

This thesis is organized as follows:

Chapter 1 , we provide an overview of the fundamental concepts that guided the devel-
opment of the theory of GR concisely and clearly. Then we present a brief review of
the gauge theory of gravity.

Chapter 2 , we provide an overview of the fundamental idea of NC geometry and its
motivation in physics. In particular, we present some mathematical tools of geometry,
such as the star product and the SW map for the foundation of the NC gauge theory
of gravity.

Chapter 3 , we investigate the effect of non-commutativity on the geometry of some BHs
metric by computing the NC correction to a general form of spherical symmetric

1 In-homogeneous Lorentz group.
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metric. Then, we investigate some geometrical properties of two types of BHs, which
are the Schwarzschild BH and RN ones, where we present the effect of this geometry
on both singularity and the event horizon.

Chapter 4 , we investigate the motion of different types of particles in the deformed space-
time in the presence of non-commutativity in a different spacetime. In particular, we
are interested in two kinds of motion around the deformed BHs, which are the radial
and the circular geodesic, where we present the NC correction to each one of them
for different types of particles. Also, we discuss the stability of circular orbits. Finally,
we examine the four classical experimental tests of GR inspired by the NC geometry
to give an estimation for the lower bound on the NC parameter.

Chapter 5 , we investigate in detail the thermodynamic properties of the deformed
Schwarzschild BH in the presence of non-commutativity in different scenarios. In
particular, we are interested in two approaches to BH thermodynamics in the NC
geometry and for different scenarios. First, we use the classical approach to inves-
tigate its thermal stability and phase transition in different cases. In the second ap-
proach, we study Hawking radiation as a quantum tunneling process of massless
particles from BH in the context of NC gauge theory, in which we investigate two
scenarios: thermal and non-thermal radiation. Finally, we examine some of the BH
phenomenology quantities inspired by the gauge theory of non-commutativity.

In the last chapter , we present our remarks and conclusions.
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1
O V E RV I E W O F G E N E R A L R E L AT I V I T Y

In this first chapter, we provide an overview of the fundamental concepts that guided the develop-
ment of the theory of GR concisely and clearly. In particular, the relationship between gravitational
interaction, accelerated reference frames, and spacetime geometry will be highlighted. For further
mathematical details, we refer the readers to visit some text books [1, 8, 174–179].

This chapter is organized as follows: In Sect. 1.1, we present briefly the basic ideas of
the GR theory. In Sect. 1.2, we present some consequences of the Schwarzschild solution,
and then we study the four classical tests of GR. In Sect. 1.3, we briefly present the main
results of Hawking radiation and summarize the four laws of the BH thermodynamics. In
the final Sec. 1.4, we briefly see the basis of gravity in the gauge theory.
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8 overview of general relativity

1.1 einstein gravity

In 1905, when A. Einstein published his special theory of relativity, he only dealt with the
cases of inertial systems, i.e., systems in motion without acceleration, so this theory only
describes some cases of physical phenomena. At that time, the question of the object’s ac-
celeration, as much as it bothered him, allowed him to discover a global theory of relativity.
At the same time, this new theory allows us to treat all possible cases (whatever the state
of the movement), if the theory of general relativity can write all the laws of physics, what-
ever the system of coordinates. This problem caused Einstein to generalize the principle of
special relativity to general relativity.

1.1.1 Generalization of the Special Relativity Principle

To wait for a general theory of relativity and to avoid the problem of non-inertia or so-
called accelerating frames. In 1907, Einstein generalized the principle of restricted relativity
for all reference frames, whatever their state of motion, i.e., an accelerated reference frame
compared to the inertial reference frame or a rotating reference frame [180]:

"The laws of physics are the same in all systems of reference regardless of their state of motion."

So all reference frames, whatever their state of motion, are equivalent to writing the laws
of physics in the same way.

1.1.2 The non-Euclidean geometry of spacetime

The problem of right geodesics in Euclidean space (with a positive signature (+1,+1,+1,+1),
masking the essential quality of the free system, which is subject to a law of minimum [180],
to avoid it, Einstein thought of a non-Euclidean space-time to describe all the information
possible on the free system to its information is contained in their geodesic:

"Any free system is animated by a geodesic movement of space-time."

where each point of this spacetime is labeled by a four-vector xµ ≡ (x0, x1, x2, x3) =

(ct, x, y, z).
Einstein used differential geometry to construct the law of geodesics, which generalized

Galileo’s principle:

"The geodesic equations are straight lines in spacetime (4-space) that correspond to the motion of
free particles in 3-space."

d2xµ

dλ2 + Γµ
αβ

dxα

dλ

dxβ

dλ
= 0 (1.1)
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where λ is the affine parameter, and the quantities Γµ
αβ are called the linear connection

coefficients or Christoffel symbols of the 2nd kind, defined by:

Γµ
αβ =

1
2

gµρ
(
∂αgρβ + ∂βgαρ − ∂ρgαβ

)
. (1.2)

where gµν is the metric tensor. The problem is to determine the non-Euclidean metric gµν to
solve the geodesic equations. To solve this problem, Einstein used Riemannian geometry
to construct his famous gravitational field equation; instead, Minkowski spacetime was
replaced by pseudo-Riemannian spacetime, in which the habitual notion of "distance" was
replaced by the notion of the "metric" gµν. The metric gµν can be defined by the invariant
distance between two events, which is called the line element ds2:

ds2 = gµνdxµdxν (1.3)

In the flat spacetime as an example, the components of gµν are given by the Minkowski
metric gµν = ηµν = (−1, 1, 1, 1), and in the curved spacetime, the metric gµν is a function
of spacetime coordinates xµ and describes all geometrical properties of spacetime.

1.1.3 Equivalence principle

The principle of equivalence was published by A. Einstein [176]:

"In a freely falling (non-rotating) laboratory occupying a small region of spacetime, the laws of
physics are those of special relativity."

Moreover, Einstein made a revolutionary proposal when he proposed the equivalence
between the gravity mass and the inertial mass (mg = mi), in which locally the acceleration
is equivalent to a gravitational field (−→a ≡ −→g ) [180]:

"At least locally, a field of gravitational forces is equivalent to the inertial force field that would
create the acceleration of the reference system, suitably accelerated by relation to the Galilean

frames of reference."

Einstein inspired this relation of equivalence by a thought experiment of two rockets,
one motionless on earth and the other in space with accelerated motion.

1.1.4 The stress-energy-momentum tensor

The distribution of matter and energy in space-time can be expressed as an energy-
momentum tensor; in its most simple form, it can describe a perfect fluid, or a fluid is
said to be a perfect fluid if there is no transport of heat or viscosity; moreover, isotropic flu-
ids, which are defined by an energy-momentum tensor Tµν with the following components
[176]:

T00: energy density.
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In Earth

Ð→g= Ð→g
E

Ð→a f = Ð→0

Ð→a b = Ð→g E

In space

Ð→g= Ð→0

Ð→a f = −Ð→g E

Ð→a b = Ð→g E

★
★

★

★

★
Figure 1.1: Thought experiment of two rockets (principle of equivalence).

T0i: the energy flow divided by c in direction i.

Ti0: the momentum density multiplied by c in the direction i.

Tij: the flow of the i component of the pulse in the j direction.

In a rest frame, the tensor components Tµν of a perfect fluid1, are a function of the energy
density ρ and the pressure p with the four-vector perfect fluid velocity uµ, so T is written:

Tµν =


ρc2 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 (1.4)

The general case of the energy-momentum tensor in any coordinate system is given by:

Tµν = (ρ +
p
c2 )u

µuν − pgµν. (1.5)

This tensor satisfies the following conservation equation:

∂µTµν = 0 (1.6)

1.1.5 Einstein equation

The famous idea of A. Einstein on the nature of space-time and its pseudo-Riemannian
geometry allowed him to find the relationship between curvature and the presence of mat-
ter, at which matter can influence the geometry of space-time and likewise geometry can
influence the motion of matter. This relationship revolutionized our vision of the classical

1 i.e. in the absence of any dissipative transport phenomena, for example, heat, diffusion, and viscosity
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theory of gravity (Newtonian gravity), which allowed him to make a relativistic descrip-
tion of gravitation [176]:

"Gravity should no longer be regarded as a force in the conventional sense but rather as a
manifestation of the curvature of spacetime, this curvature being induced by the presence of

matter."

So space-time is sensitive to the presence of matter or energy. This geometry (non-
Euclidean) allows the test particles that are subjected to inertial forces to be considered
free test particles; on the other hand, in Euclidean geometry, the particles subjected to
Newton’s gravitational force are not free, and their movement is accelerated relative to the
inertial reference [180]. In pseudo-Riemannian geometry, the tensor that characterizes the
propriety of the curved spacetime is a tensor of rank (1, 3) and is the so-called Riemannian
tensor Rµ

νλρ [181]. This tensor vanishes only in flat spacetime, as the Minkowski one, and is
defined as a nonlinear combination of the Christoffel symbol Γµ

νλ and its derivative. More-
over, the general tensor that describes the geometrical properties of spacetime is defined
by a linear combination of the curvature tensor and the metric and is written as follows
[176]:

Gµν = Rµν +
1
2

gµνR (1.7)

where Gµν is called Einstein’s tensor, Rµν = Rη
µην, and R denotes the tensor and the scalar

of Ricci, respectively. The only equation that describes gravitational field dynamics is Ein-
stein’s equation in GR, in which he coupled the geometry to energy and matter by his
famous equation [176]:

Gµν =
8πG

c4 Tµν (1.8)

where the constants G and c are Newton’s gravitational constant and the speed of light
constant, respectively, and T muν, which describes the physical containment of matter and
energy (the perfect fluid), is defined by the relation (1.5). The solution of the above equa-
tion allows us to obtain all the information on the geometry of spacetime in the metric
tensor gµν. We can clearly see that the left term of this equation writes the geometric infor-
mation and tells us how spacetime is curved, while the right term writes the distribution
of matter (the perfect fluid). We note that the Ricci tensor trace is proportional to the
energy-momentum tensor trace2, so we have:

R = −8πGT (1.9)

In the vacuum case, i.e., there is no matter and no energy, Tµν = 0, so the curvature scalar
is zero, R = 0, then Einstein’s equation comes down to a simple one:

Rµν = 0 (1.10)

To determine the metric gµν, it is necessary to solve Einstein’s equation in vacuum (1.10)
or in the presence of matter (1.8) according to the case studied.

2 Defined as follows: T = gµνTµν.
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1.2 schwarzschild solution

In December 1915, a few weeks after Einstein’s publication of his gravitational field equa-
tion (1.8), a German astrophysicist called Karl Schwarzschild published the first free so-
lution of Einstein’s equations (1.10). This solution was called the Schwarzschild metric.
Schwarzschild solution is a particular solution of Einstein’s equations, since he considered
the case of the gravitational field source outside3, or he has considered a static (i.e., time-
independent) metric with spherical symmetry, and the only variable is r. The Schwarz-
schild solution is written [1, 8, 174, 176, 179]:

ds2 = −
(

1− 2GM
c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2dΩ2 (1.11)

with dΩ2 = r2dθ2 + r2sin2θdφ2 denoting the solid angle, M describing the mass of the
gravitational field source, and G is the Newton constant. This solution describes the space-
time metric around a spherical mass, and this metric can be used to study the motion of
a planet around the sun. One of the uses of this metric is to find the Keplerian equations
of motion in first approximation to the geodesic equation (1.1) of Schwarzschild space-
time (1.11); moreover, the Schwarzschild equations describe well the periastron advances
of the planets and some secondary phenomena inaccessible to the approximate theory of
Newtonian gravitation.

One of the other phenomena described by the Schwarzschild metric are BHs, where
the singularity problem begins. The Schwarzschild metric is valid from infinity to the
surface of the spherical object of mass M, and the vacuum equations no longer apply at
the boundary of this surface. This surface is defined by a singularity of the Schwarzschild
coordinates at rs =

2GM
c2 , at its radius called the Schwarzschild radius, and this surface is

also called the event horizon. When a massive object of mass M and radius r contracts
sufficiently so that its radius tends towards the Schwarzschild radius r → rs, this object
becomes a Schwarzschild BH due to the gravitation of itself. BH will become intense, and
all other nearby objects will fall on this surface (the event horizon). Nothing can escape
from this surface, not even light.

1.2.1 Classical test of general relativity

In 1915, Albert Einstein, when he published his theory of general relativity, proposed three
classical tests for his theory, which provide success to general relativity for the prediction
with good accuracy to the experimental test. The first three classical tests are considered the
first signs of the validity of his theory, which were the periastron advance of the Mercury
orbit, the deflection of light, and the red-shift [182]. Later in 1964, the fourth classical test
of general relativity was discovered and observed by I. Shapiro [183], which is so-called
the time delay, and became another successful test of general relativity.

3 i.e., au Tµν = 0



1.2 schwarzschild solution 13

In which we present the first four successful classical tests of general relativity, which
are based on the Schwarzschild geometry (1.11).

1.2.1.1 Periastron Advance of Mercury

Let us consider the motion of the Mercury planet around the Sun’s as a massive particle
in Schwarzschild geometry.

Figure 1.2: Schematic picture of periastron advance of the orbit.

The geodesic equation that describes this system can be obtained using (1.1) together
with (1.2), or using the Lagrangian of the massive particle in curved spacetime. For a
simple case, we would consider the motion of the test particle only in the equatorial plane
θ = π

2 with the initial condition θ̇ = 0. The lagrangian in this case is given by

2L = gµν ẋµ ẋν,

= −
(

1− 2m
r

)
c2 ṫ2 +

(
1− 2m

r

)−1

ṙ2 + r2φ̇2. (1.12)

where the dot denotes the derivative with respect to the affine parameter, τ, along the
geodesic, and m = GM

c2 . The extract of the constant of motion can be obtained using the
following Euler-Lagrange equation:

d
ds

(
∂L
∂ẋµ

)
− ∂L

∂xµ
= 0. (1.13)

and use the fact that L is independent of t and φ, we obtain two conserved quantities.

d
ds

(
∂L
∂ṫµ

)
=

d
ds

(
−
(

1− 2m
r

)
ṫ
)
= 0.(

1− 2m
r

)
ṫ = cnst = E, (1.14)

and for φ,

d
ds

(
∂L
∂φ̇µ

)
=

d
ds
(
r2φ̇
)
= 0.
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r2φ̇ = cnst = l, (1.15)

where E and l are denoted, respectively, as the energy and the orbital momentum per unit
mass. In a similar way, we use the Euler-Lagrange equation to obtain the second-order
equation for r, but the obtained equation provides a challenge to solve; it is better to deal
with the first-order one in (1.12), which is the sample to solve it. For that, using the two
above conserved quantities together with (1.12) for a massive particle, we get

−c2 = −
(

1− 2m
r

)
c2 ṫ2 +

(
1− 2m

r

)−1

ṙ2 + r2φ̇2,

= −
(

1− 2m
r

)
c2

(
E(

1− 2m
r

))2

+

(
1− 2m

r

)−1

ṙ2 + r2
(

l
r2

)2

,

= − c2E2(
1− 2m

r

) +(1− 2m
r

)−1

ṙ2 +
l2

r2 , (1.16)

rearrange our equation, we find the first-order equation for r.(
dr
dτ

)2

= c2E2 −
(

1− 2m
r

)(
l2

r2 + c2
)

. (1.17)

In order to obtain the orbital motion equation of the test massive particle, we need to
write the above equation as a function of φ, and that can be done by using the conserved
quantity of the angular momentum (1.15) to write r = r(φ).

dr
dτ

=
dr
dφ

dφ

dτ
=

l
r2

dr
dφ

. (1.18)

Let us define a new variable, u = 1/r. The above equation became

l
r2

dr
dφ

= −l
du
dφ

. (1.19)

By setting the above relation into the Eq. (1.17), we obtain(
du
dφ

)2

=
c2(E2 − 1)

l2 +
2m
l2 u− u2 + 2mu3. (1.20)

Writing the above equation in the second derivative form with respect to φ, we find

d2u
dφ2 =

m
l2 − u + 3mu2. (1.21)

This equation is called the geodesic equation in Schwarzschild spacetime. As we see, the
first two terms in the right hand of the geodesic equation correspond to the Newtonian
case, and the third one, 3mu2, corresponds to the relativistic correction to test particle
motion. The solution to this equation without the relativistic corrections, 3mu2,

u0(φ) =
m
l2 (1 + e cosφ) (1.22)
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where e is the eccentricity of the orbit, and this solution represents the zero-order solu-
tion to the relativistic equation (1.21). The general solution to the geodesic equation in
Schwarzschild spacetime can be obtained by considering the relativistic correction term as
a first-order perturbation in the Newton equation.

u(φ) = u0(φ) + u1(φ) (1.23)

where u1(φ) is considered as a particular solution, which can be obtained by submitting
the general solution (1.23) into the geodesic equation (1.21) and solving it for the first order
of u1(φ). Therefore, the general solution can be expressed as follows:

u(φ) =
m
l2

(
1 + e cos

(
φ(1− 3m2

l2 )

))
. (1.24)

and hypothetically, the quantity 3m2

l2 � 1 is small. Both the solution of the Newtonian
case and the Schwarzschild solution represent the elliptic orbit of a massive test particle,
and the difference can be found in the orbits themselves, in which the Newton solution
represents a closed orbit with a 2π period, while the Schwarzschild solution provides a
non-closed orbit with a 2π/(1− 3m2

l2 ) period, which means the period in the Schwarzschild
solution is longer compared to the Newtonian case. As we mentioned above, the period
in Schwarzschild spacetime is shifted from the Newtonian case by a factor of 3m2

l2 (in the
leading order of the period 2π/(1− 3m2

l2 )). Let us now derive the deviation angle of the
orbit in Schwarzschild spacetime.

∆φ =
2π

1− 3m2

l2

− 2π ≈ 6πm2

l2 (1.25)

where angular momentum satisfied the following relation for an elliptic orbit: l2 = ma(1−
e2). By setting this relation into the above one, we obtain the angel deviation of the planet
orbiting around a massive static object (Schwarzschild spacetime) [176].

∆φ =
6πG M

c2 a(1− e2)
. (1.26)

As an application to the angle deviation, we use experimental data of some planet’s
from our solar system [184–186] and compare it to the prediction results using the above
equation (1.26), which is summarized in the following table:

It is clear that the prediction results from this theory are in agreement with the observa-
tion, which has high accuracy, for the different planets in our solar system.

1.2.1.2 Deflection of light

The deflection of light is one of the three first successful experimental tests of general
relativity, as predicted by Einstein. In this phenomenon, the light passing near a massive
object is deflected from its original path (see Fig. 1.3).



16 overview of general relativity

Table 1.1: Comparison between the experimental observation and the theoretical prediction of GR
of the angel deviation of some planet of our solar system, which are: mass of the planet
(M), semi-major axis (α), eccentricity (e), orbital period (T), orbital precession in columns
2–6, respectively. The prediction of the orbital precession in general relativity in column
7

Planet Mass α e T ∆φobs ∆φGR

(1024Kg) (AU) ( rev
centry ) ( arc−sec

centry ) ( arc−sec
centry )

Mercury 0, 3301 0.39 0.206 415.203 42.9800± 0.0020 42.9805
Venus 4, 8675 0.72 0.007 162.574 8.6247± 0.0005 8.6283
Earth 5, 9724 1.00 0.017 100 3.8387± 0.0004 3.8399
Mars 6.44171 1.52 0.093 53.175 1.3565± 0.0004 1.3514

Jupiter 1898.19 5.20 0.048 8.431 0.0700± 0.0040 0.0623
Saturn 568.34 9.54 0.056 3.396 0.0140± 0.0020 0.0137

ro
∆ϕ Source

Observer

r∞b

Black Hole

Figure 1.3: Schematic picture of light deflection by the gravitational field.

Considering now a photon approaching a compact object from infinity r∞ (see Fig. 1.3),
at this distance the spacetime is described by the Minkowski metric, and the motion of
photons is expected to be a straight line passing near the massive object at distance b (called
the impact parameter). However, this is not the simple case as in Minkowski spacetime; in
Schwarzschild spacetime, the phat of the photon near a massive object is deflected with
angle ∆φ, which is determined in a similar way as above. In the case of the photons, we use
the same Lagrangian expression (1.12) with 2L = 0, and together with the two conserved
quantities (1.14)-(1.15), we obtain(

dr
dτ

)2

= c2E2 − l2

r2

(
1− 2m

r

)
. (1.27)

Using the relation (1.18) to write the orbital equation r(φ) as a function of φ, we find(
dr
dφ

)2

=
r4

l2 c2E2 − r2
(

1− 2m
r

)
. (1.28)
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Considering that this type of particle at a distance of r0 from the massive object is in a
circular orbit, for which ṙ0 = 0, we can extract the energy condition of this particle from
the equation (1.27).

E2 =
l2

c2r2
0

(
1− 2m

r0

)
. (1.29)

substituting this relation into (1.28), with some algebra, we obtain the general solution to
Eq. (1.28)

φ(r)− φ∞ =
∫ ∞

r

dr

r
(
1− 2m

r

)1/2

 r2

r2
0

(
1− 2m

r0

)
(
1− 2m

r

) − 1

−1/2

(1.30)

It is practical to expand this expression in the first order on m before integrating; after
some algebra, we find

φ(r)− φ∞ =
2m
r0

+
π

2
−

m(r0 + 2r)
√

r2
0

r2 − 1

r(r0 + r)
− tan−1

√ r2
0

r2 − 1

+ ..., (1.31)

The deflection angle of the light closing on the massive object can be evaluated as follows:
[187]

∆φ = 2|φ(r0)− φ∞| − π =
4m
r0

,

=
4G M
c2 r0

. (1.32)

The above formula allows us to predict the angle of deflection of the light path close to
any massive object. For example, if a light passes close to the Sun, its path is deflected by
angle ∆φ ≈ 1.749”, compared to the experimental results observed by Eddington in the
1919 Sun eclipse, which give two values [181]: ∆φ ≈ 1.98 + 0.16” and ∆φ ≈ 1.61 + 0.4”.
As we see the theoretical prediction, it’s in agreement with the observation, and that is
considered another success test for the GR.

1.2.1.3 Einstein effect

The third experimental test of GR was described for the first time by Einstein in 1907 before
he published his full theory of relativity, which is known as the Einstein effect4 or more
generally, the gravitational red-shift. This phenomenon is one of the four success classical
tests of GR, in which the light moving away from a gravitating field created by a massive
object loses some of its energy, and this loss of energy corresponds to an increase in the
wavelength λ (a decrease in frequency).

This shift in the spectral of light due to gravity can be determined using a simple exam-
ple of two fixed observers, emitter rE and receiver rR in Schwarzschild spacetime.

4 This effect is similar to the Doppler effect in flat space.
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tE

tE + ∆tEt

tR

tR + ∆tR

Source Observer

Emitter
rE

Receiver
rR

Figure 1.4: Schematic example of emitter and receiver of two signals of light.

Let us now suppose that the emitter observer rE sends two luminous signals successively
and separated by an interval of proper time ∆τE measured by the observer rE, and there
are received by the observer rR in interval ∆τR (see Fig. 1.4). The traveling of the light
between rE and rR is described by the null-geodesic, and the two luminous signals travel
in the same spatial path at two different coordinate times for emission at the time tE and
tE + ∆tE and reception at the time tR and tE + ∆tR, which means the two signals take
the same coordinate time to travel from rE to rR, and that suggests the following equality:
∆tE = ∆tR.

The relation between the proper time measured by the two fixed observers (dr = dθ =

dφ = 0) and the coordinate time in Schwarzschild spacetime can be obtained from the
metric (1.11) in the following formula:

ds2 ≡ −c2dτ2 = −
(

1− 2m
r

)
c2dt2, (1.33)
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which gives us the following two relationships:

∆tE =

(
1− 2m

rE

)−1/2

∆τE, ∆tR =

(
1− 2m

rE

)−1/2

∆τR, (1.34)

With the equality ∆tE = ∆tR, we get

∆τR

∆τE
=

√√√√1− 2m
rR

1− 2m
rE

(1.35)

Using the definition of the frequency ν = 2π
T , with ∆τ representing the period of the signal

in this case, the above expression became

νR

νE
=

√√√√1− 2m
rE

1− 2m
rR

, (1.36)

According to this relationship, we can now define the red-shift expression by:

z =

√√√√1− 2m
rR

1− 2m
rE

− 1. (1.37)

1.2.1.4 Shapiro effect

In 1964, the fourth successful classical test of GR was discovered and observed by I. Shapiro
[183]. Shapiro and the Lincoln Laboratory team made measurements of the time needed
for the radar signals to travel to the inner planets and reflect back to Earth [181]. In this
phenomenon, the radar signals passing near a massive object (such as the Sun) take slightly
longer to travel to the inner planets (such as Venus) and longer to return to the Earth than
they would if the Sun were not present, and that is known as gravitational time delay and
also the Shapiro effect.

Earth

Venus

b

Black Hole

Figure 1.5: Schematic picture of the Shapiro effect.

Supposing now that a radar signal travels from the Earth r = rE to Venus r = rV passes
near the sun, the geodesic equation corresponding to this system is given by (1.27). Now
we want to write this equation as a function of coordinate time t, r ≡ r(t).

dr
dτ

=
dr
dt

dt
dτ

=
E

(1− 2m
r )

dr
dt

. (1.38)
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substituting this into the equation (1.27), we get(
dr
dt

)2

= c2(1− 2m
r
)2 −

l2(1− 2m
r )3

E2r2 . (1.39)

For the closest point passing by the light near the sun, r = r0; at this point, ṙ0 = 0, so the
above equation gives us

l2

E2 =
c2r2

0

(1− 2m
r0
)

, (1.40)

substituting this condition inside the Eq. (1.39), we find

dr
dt

= c(1− 2m
r
)

(
1−

r2
0(1− 2m

r )

r2(1− 2m
r0
)

)1/2

. (1.41)

The integral to the above equation gives us the coordinate time.

t(r, r0) =
∫ r

r0

1
c(1− 2m

r′ )

(
1−

r2
0(1− 2m

r′ )

r′2(1− 2m
r0
)

)−1/2

dr′,

=

√
r2 − r2

0

c
+

2m
c

ln

 r +
√

r2 − r2
0

r0

+
m
c

(
r− r0

r + r0

)1/2

. (1.42)

For the example illustrated in Fig. 1.5, the necessary time for a radar signal traveling in a
straight line from Earth to Venus and reflected is given by

∆t = 2
[

t(rE, b) + t(rV , b)−
√

rE − r0

c
−
√

rV − r0

c

]
(1.43)

If we take into consideration the distance at our solar system level (see Fig. 1.5), we have
rE � r0 and rV � r0. At this limit, our above equation became

∆t ≈ 4GM
c3

(
ln
(

4rE rV

r2
0

)
+ 1
)

, (1.44)

The above expression describes the time delay of a radar signal passing near the Sun, in
the case of the Venus planet on the opposite side of the Sun from the Earth (see Fig. 1.5).
For the numerical application, we get

∆t ≈ 252µs. (1.45)

For more detail in the experiment (Fig. 1.5), see Refs. [179, 188].
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1.3 black hole thermodynamics and hawking radiation

In the classical picture, a BH is a physical object with a strong gravitational field in which
nothing can escape from its gravity, not even light (as we see in the above Sec. 1.2), and
that led the scientists to consider that the BHs are the darkest objects in the universe.
Unfortunately, that is not the case. In 1975, Stephen Hawking published the most important
theoretical paper [53], in which he discovered the first mechanism that unified quantum
mechanics with gravity, where he applied the techniques of quantum field theory in curved
spacetime near the event horizon of BHs, and that led him to find amazing results, for
which the BHs are note so dark as we expected, in a same way as the blackbody can
radiate, also the BH can emit a spectrum of particles and thus evaporate, and recently this
phenomenon is known as "Hawking radiation". Moreover, in the same paper, Hawking
demonstrated that the BHs emit radiation with a temperature proportional to their surface
gravity κ5,

TH =
κ

4π
=

h̄c3

8πGkB M
. (1.46)

where h̄ and kB are respectively the Planck and the Boltzmann constants. Before this dis-
coverer, precisely in 1973 [189], Bekenstein found a connection between the event horizon
area and the BH entropy S ∝ Ah

h̄G . A few years later, Hawking fixed the proportionality
factor to the Bekenstein entropy, which was given by

S =
kBc3Ah

4h̄G
=

4πkBGM2

h̄c
. (1.47)

The above expression is called the Bekenstein-Hawking entropy of BH. The results found
by Hawking and Bekenstein for the BHs are clearly analogous to the ordinary thermody-
namics system and thus lead to the emergent of the BH mechanics. After these works [189,
190], Hawking together with Bardeen and Carter [63] formulated the version of thermody-
namic laws for BHs in analogy to the laws of classical thermodynamics, which are known
as "the four laws of BH mechanics".

1. The zeroth law: The horizon of a stationary BH has constant surface gravity.

2. The first law: The first law of BH thermodynamics is given by the change in BH
mass.

dM = THdS + φdQ + ΩdJ. (1.48)

where φ, Q, Ω, and J are the electrostatic potential, electric charge, angular velocity,
and angular momentum, respectively.

3. The Second Law: The area of any BH event horizon cannot decrease δA > 0.

4. The Third Law: It is impossible for any process to reduce the surface gravity of a BH
to zero with a finite number of operations.

5 For Schwarzschild BH, the surface gravity is defined as follows: κ = − 1
2

∂g00
∂r |r=rh

,
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These four laws become independent tools to study the BH thermodynamics. Therefore,
the thermodynamics of BH allowed us a better understanding of the connection between
quantum mechanics and gravity, which was considered the first bridge to QG theory.

1.4 gauge theory of gravity

The gauge theory of gravity is a model of general relativity in which the gravitation has a
dS group SO(4, 1) as active symmetry group [191], and the gravitational field is generated
by a point-like source of mass m. This model was developed by G. Zet et al. [60, 61], based
on the flat manifold, which is the Minkowski spacetime in 4-dimension with spherical
coordinates.

As a first step, consider a four-dimensional Minkowski spacetime M4, in spherical coor-
dinates xµ = (ct, r, θ, φ), which is our base manifold [60, 61]:

ds2 = −dt2 + dr2 + r2 (dθ2 + sin2 θdϕ2) . (1.49)

The dS group SO(4, 1) is 10-dimensional, where in this group the infinitesimal generators
are the dS "translations" and the Lorentz transformations, which are denoted respectively
by Πa and Mab = −Mba, a, b = 0, 1, 2, 3. In general formulation of the gauge theory for
the dS group, these generators are denoted by XA, A = 1, 2, . . . , 10. Which is subject to the
general form of the structure equation:

[XA, XB] = i f C
ABXC. (1.50)

where f C
AB = − f C

BA are the structure constants. In order to write this constant, we use the
following notation for the index A:

A =

 a = 0, 1, 2, 3

[ab] = [01], [02], [03], [12], [13], [23].
(1.51)

From this notation, we have Xa ≡ Πa and X[ab] ≡ Mab. The constant of the structure f C
AB is

given in [60, 61] by:

f a
bc = f [ab]

c[de] = f a
[bc][de] = 0,

f [ab]
cd = 4λ2

(
δb

c δa
d − δa

c δb
d

)
= − f [ab]

dc ,

f a
b[cd] = − f a

[cd]b =
1
2
(ηbcδa

d − ηbdδa
c ) ,

f [e f ]
[ab][cd] =

1
4

(
ηbcδe

aδ
f
d − ηacδe

bδ
f
d + ηadδe

bδ
f
c − ηbdδe

aδ
f
c

)
− e←→ f , (1.52)

where λ is a real parameter and ηab = diag(−1, 1, 1, 1) is the Minkowski metric. It is
interesting to note that the contraction λ→ 0 leads to the contracts of the dS group to the
Poincaré group (ISO(3, 1) gauge group) [60]. In the dS gauge group, gravity is described
by a 10 gauge field denoted by hA

µ (x), A = 1, 2, ..., 10, µ = 0, 1, 2, 3. The strength tensor of



1.4 gauge theory of gravity 23

the gauge fields of gravity is Fµν = FA
µνXA, which takes its value in the Lie algebra of the

dS group. The components of this tensor are related to the gauge fields hA
µ by the relation:

FA
µν = ∂µhA

ν − ∂νhA
µ + f A

BChB
µhC

ν . (1.53)

Using the notation above of the index A (1.51), we can group the 10-gauge fields hA
µ

as the four tetrad fields ea
µ if A = a, and the six spin connection ωab

µ (x) = −ωba
µ (x),

[ab] = [01], [02], [03], [12], [13], [23] if A = [ab]. Then, the corresponding components of the
strength tensor can be written in the standard form as the torsion tensor if A = a:

Fa
µν = ∂µea

ν − ∂νea
µ +

(
ωab

µ ec
ν −ωab

ν ec
µ

)
ηbc = Ta

µν, (1.54)

and as the curvature tensor if A = [ab]:

Fab
µν ≡ Rab

µν = ∂µωab
ν − ∂νωab

µ +
(

ωac
µ ωdb

ν −ωac
ν ωdb

µ

)
ηcd − 4λ2

(
ea

µeb
ν − eb

µea
ν

)
= Rab

µν, (1.55)

The integration of action associated with the gravitational gauge fields ea
µ(x) and ωab

µ (x)
will be chosen as [60, 61]:

Sg =
1

16πG

∫
d4x e F, (1.56)

where e = det(ea
µ) and

F = Fab
µν eµ

a eν
b . (1.57)

Here, eµ
a (x) denotes the inverse of ea

µ(x) satisfying the usual properties:

ea
µeµ

b = δa
b , ea

µeν
a = δν

µ. (1.58)

The field equations for the gravitational potentials ea
µ(x) are obtained by imposing the

variational principle δeS = 0, with respect to ea
µ(x), firstly we write:

δe(e F) =
[
(δee)F + e(δeFab

µν)e
µ
a eν

b + eFab
µνδe(e

µ
a eν

b)
]

=

−e Fea
µ δeµ

a + e (δFab
µν) eµ

a eν
b + e (Fab

µνδeµ
a eν

b + Fab
µν eµ

a δeν
b

a↔b,µ↔ν

)


=
[
−e F ea

µ δeµ
a + e (δFab

µν) eµ
a eν

b + 2e Fab
µνδeµ

a eν
b

]
(1.59)

The second term in this equation vanishes with the integration, so we get:

δSg =
1

16πG

∫
d4x e

[
− F ea

µ + 2 Fab
µν eν

b

]
δeµ

a = 0, (1.60)

Then we get the Einstein equation in the vacuum:

Fa
µ −

1
2

F ea
µ = 0, (1.61)
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where Fa
µ is equivalent to the Ricci tensor, which is defined by:

Fa
µ = Fab

µν eν
b , (1.62)

For the other gravitational gauge potentials ωab
µ (x) (spin connection), their field equations

are equivalent to:
Fa

µν = 0. (1.63)

We suppose that the gravitational field has spherical symmetry and is created by a
point-like source of mass m in our base manifold (1.49). Where the gravitational field is
described by a particular form of the spherically symmetric 10-gauge field, which is given
by the following ansatz [60, 61, 192]:

e0
µ = (A, 0, 0, 0) , e1

µ =

(
0,

1
A

, 0, 0
)

, e2
µ = (0, 0, r, 0) , e3

µ = (0, 0, 0, r sin θ) , (1.64)

and

ω01
µ = (U, 0, 0, 0) , ω02

µ = ω03
µ = 0, ω12

µ = (0, 0, A, 0) , (1.65)

ω13
µ = (0, 0, 0, A sin θ) , ω23

µ = (0, 0, 0, cos θ) ,

where A and U are functions only of the 3-dimensional radius r. Using the above expres-
sions (1.54) and (1.55) to compute the components of the tensors Fa

µν and Fab
µν. The non-null

components of these tensors are:

F0
01 = −AA′ + U

A
. (1.66)

respectively:

F01
10 = U′ + 4λ2, F02

20 = A
(
U + 4λ2r

)
, F03

30 = A sin θ
(
U + 4λ2r

)
,

F12
21 =

−AA′ + 4λ2r
A

, F13
31 =

(
−AA′ + 4λ2r

)
sin θ

A
,

F23
32 =

(
1− A2 + 4λ2r2) sin θ, (1.67)

where A′ and U′ denote the derivatives with respect to the variable r.
Using the definitions (1.57) and (1.62) to compute the equivalent of the Ricci scalar F

and Ricci tensor Fa
µ (only the non-null components) in the dS gauge group:

F = −2
r2U′ + 2rU − 2rAA′ − A2 + 1

r2 − 48λ2. (1.68)

and:

F0
0 = −A(rU′ + 2U + 12λ2r)

r
, F2

2 = − rU − rAA′ + 1− A2 + 12λ2r
r

,

F1
1 = − rU′ − 2AA′ + 12λ2r

rA
, F3

3 = − rU − rAA′ + 1− A2 + 12λ2r
rA

sinθ, (1.69)



1.4 gauge theory of gravity 25

Put all of these in the equation (1.61), and we obtain the following equations for the gauge
fields ea

µ:

2AA′

r
− 1− A2

r2 − 12λ2 = 0 ,

U − AA′ + rU′ + 12λ2r = 0 ,

−2AA′ + rU′ + 12λ2r = 0 . (1.70)

In the null torsion, the field equation of ωab
µ (1.54) gives us a constraint on the component

U. From (1.66) we get:
U = −AA′, (1.71)

Use this constraint, the second and third equations in (1.70) become identical, and these
systems of equations reduce to two field equations with one unknown function, A(r):

−2AA′

r
+

1− A2

r2 + 12λ2 = 0 ,

−2AA′

r
−U′ − 12λ2 = 0 . (1.72)

The difference between these two equations is:

1− A2

r2 −U′ = 0 , (1.73)

Then, using the constraint (1.71), we can get the differential equation of the function A2(r),
which can be written as:

r2(A2)′′ − 2(A2) + 2 = 0 , (1.74)

The solution of this equation is:

A2 = 1 +
α

r
+ β r2 , (1.75)

where α and β are constants of integration. It is well-known [8, 179] that the constant α is
determined at the Newtonian limit by the mass m of the point-like source that creates the
gravitational field:

α = −2m . (1.76)

The other constant β was determined by using the effect that the solution (1.75) satisfies
the field equation (1.72), then we find β = 4λ2 = −Λ

3 , where Λ is the cosmological constant
of the model [193], such that the solution finally reads:

A2 = 1− 2m
r
− Λ

3
r2, U = −m

r2 +
Λ
3

r. (1.77)

If we consider the contraction λ → 0, then the dS group becomes the Poincaré group,
and the solution (1.77) reduces to the Schwarzschild one.
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The final metric gµν can be obtained using the following relation:

gµν = ea
µeb

ν ηab , (1.78)

Using the relations (1.64) and (1.77), we get:

gµν = −
(

1− 2m
r
− Λ

3
r2
)

c2 dt2 +

(
1− 2m

r
− Λ

3
r2
)−1

dr2 + r2 dθ2 + r2 sinθ2 dφ2 . (1.79)

It is clear that this solution represents the dS Schwarzschild BH, and in the Poincaré group
limit Λ = 0, this metric is reduced to the Schwarzschild one (1.11).



2
N O N - C O M M U TAT I V E G A U G E T H E O RY O F
G R AV I T Y

In this chapter, we provide an overview of the fundamental idea of NC geometry and its motivation
in physics. In this overview, we present briefly some mathematical tools of non-commutativity, in
particular the star product and the SW map for the foundation of the NC gauge theory of gravity.
For more detail in this context, we refer to the readers to some Refs. [130, 160, 178, 194–196].

This chapter is organized as follows: In Sect. 2.1, we present the motivation to use
non-commutativity in physics. In Sect. 2.2, we present briefly the basic idea of non-
commutativity and their gauge theory by presenting the Weyl transformation, the Moyal
product, and the SW map. In the final Sec. 2.3, we present the deformed gauge theory of
gravity in the context of the NC resulting from solving the SW map, and then we present
an application to the dS Schwarzschild BH.

27
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2.1 motivation of the non-commutative in physics

In the NC geometry, we adopt the same concept as in the quantization of observables
in quantum mechanics, where the position changes to the operator one xµ → x̂µ and is
subject to the commutation relation between the coordinates themselves, which is given by

[x̂µ, x̂ν] = ih̄Θµν, (2.1)

where Θµν = −Θνµ is an anti-symmetric matrix with a positive constant parameter Θ.
The NC parameter determines the fundamental cell discretization of spacetime much in
a similar way as the Planck constant h̄1 discretizes the phase space, and this constant can
define a minimal length. The use of this geometry is motivated by many problems in
modern physics. Here we summarize some of the them:

1. Strong magnetic field in the classical level: In [197], the author demonstrated that,
for a charged test particle e with a small mass moving in a homogeneous constant
strong magnetic field B, the classical Poisson bracket between positions is different
from zero and it’s given by

{xµ, xν} = c(B−1)µν

e
, (2.2)

It is clear that the coordinates of spacetime in this physical problem do not com-
mute in the classical Poisson bracket, which are the coordinates perpendicular to the
magnetic field.

2. Fundamental length: For any theory of QG,a fundamental length must be predicted
at the Planck scale because the effects of gravity at this scale are significant and must
be taken into account [198]. As we know in the algebra of the NC spacetime, we
have an uncertainty relation between the coordinates of the spacetime themselves, in
a similar way to the Heisenberg uncertainty relation in quantum mechanics.

∆x̂µ∆x̂ν >
1
2

Θµν, (2.3)

and that prevents one from measuring positions with better accuracy than the Planck
length.

3. Remove the divergence: The presence of the fundamental length and the uncertainty
relation between coordinates of spacetime lead to a lower bound for any position
measurement, which removes the short-distance divergences in quantum field theory,
and that is due to the presence of non-commutativity.

4. String theory: In [160], the authors shows that, in the B-field background with D-
branes, for the open string, their endpoints become non-commutative.

1 In our calculation we take h̄ = 1.
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2.2 non-commutative framework and gauge theory

In this section we present briefly the NC spacetime and its algebra, where we present the
Weyl transformation and the star product, with the gauge theory of non-commutativity.
For more detail we refer the readers to visit some references that take in detail the above
points such as [130, 160, 178, 194–196].

2.2.1 Weyl Transformation

Let us now consider the algebra of the Schwartz functions f (x) on the 4-dimensional
Euclidean spacetime R4, in which these functions and their all-order derivatives vanish
rapidly at infinity in both spaces of positions and momentum [199]. These functions admit
a Fourier transform f̃ (p) with it’s inverse transformation, given by

f̃ (p) =
∫

d4xe−ipµxµ
f (x), (2.4a)

f (x) =
∫ d4 p

(2π)4 eipµxµ
f̃ (p), (2.4b)

The Fourier transform function f̃ (p) is also a Schwartz function and it’s subject to the same
properties we mentioned above.

The Weyl operator for a function f is given by

Ŵ [ f ] =
∫ d4 p

(2π)4 f̃ (p)eipµ x̂µ
, (2.5)

It is easy to prove that the Weyl operator is hermitian Ŵ [ f ]† = Ŵ [ f ] for a real function
f (x) [130]. The form of the quantizer operator ∆(x̂i, xi) can be obtained by substituting the
function f̃ (p) inside (2.5),

Ŵ [ f ] =
∫

d4x f (x)∆(x̂i, xi), (2.6)

where ∆(x̂i, xi) is given by

∆(x̂, x) =
∫ d4 p

(2π)4 eipµ x̂µ
e−ipµxµ

, (2.7)

It is clear that in the commutative limit Θ → 0, the operator function ∆(x̂, x) is reduced
to the Dirac distribution δ4(x̂− x); injecting this inside Eq. (2.6), we can easily show that
Ŵ [ f ] = f (x̂), while for Θ 6= 0, we must use the Baker-Campbell-Hausdorff (BCH) formula,
which gives us

eipµ x̂µ
eip′ν x̂ν

= e−
i
2 Θµν p′µ pν ei(p+p′)µ x̂µ

. (2.8)
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Let us now consider the non-hermitian derivative operator ∂̂µ in the non-commutative
space R4

Θ, which satisfies the following commutation relations:[
∂̂µ, x̂ν

]
= δµν,

[
∂̂µ, ∂̂ν

]
= 0. (2.9)

By using the commutation relations above, it is easy to prove the following commutation
relations: [

∂̂µ, ∆(x̂, x)
]
= −∂µ∆(x̂, x), (2.10a)[

∂̂µ, Ŵ [ f ]
]
= Ŵ [∂µ f ]. (2.10b)

According to the result in Eq. (2.10a), we can compute the translation transformation in
spacetime for the operator ∆(x̂, x). By using the unitary translation operator eα∂̂µ , with
some algebra, we can show that

eαµ ∂̂µ ∆(x̂, x)e−αµ ∂̂µ = ∆(x̂, x− α) (2.11)

This result suggests that, for any trace on the algebra of the Weyl operator, the Tr∆(x̂, x)
is independent of x, which means Tr∆(x̂, x) = Tr∆(x̂, x − α). We choose the following
normalization factor: Tr∆(x̂, x) = 1/

√
det(2πΘ), where in the phase space, the quantity√

det(2πΘ) represents the volume of an elementary cell in the NC spacetime R4
Θ. Using

this fact, the trace of the Weyl operator given by Eq. (2.6) is given by the following integral:√
det(2πΘ)TrŴ [ f ] =

∫
d4x f (x), (2.12)

We use the anti-symmetric property of the NC matrix Θ to show that the operators
∆(x̂, x) for any x from the commutative spacetime R4 form an orthogonal relation, given
by √

det(2πΘ)Tr (∆(x̂, x)∆(x̂, y)) = δ4(x− y), (2.13)

By using this formula, we can easily prove the following trace,√
det(2πΘ)Tr

(
Ŵ [ f ]∆(x̂, x)

)
= f (x), (2.14)

It is evident from this that the Weyl map ∆ does, in fact, give a one-to-one correspondence
between operators and fields.

2.2.2 Moyal product (∗−star product)

In the NC spacetime, the coordinates of spacetime xµ become operators x̂µ (by applying
Weyl operator (2.5)) to satisfy the commutation relation (2.1), and that leads to the deforma-
tion in the habitual algebra of the commutative case. In this context, the ordinary product
is not held in this deformed geometry; for that reason, the ordinary product is replaced by
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a new product, which is called the Groenewold-Moyal-Weyl product. In order to find the
proper definition of the deformed product in this algebra, we use the fact that the product
of the two Weyl operators Ŵ [ f ] and Ŵ [g] corresponds to the Weyl operator of the new
function Ŵ [h], and we need to find h(x) as a function of f (x) and g(x). For that, we begin
by defining the generalization form of the orthogonal relation given in Eq. (2.13),√

det(2πΘ)Tr (∆(x̂, x)∆(x̂, y)∆(x̂, z)) = δ4(x− y), (2.15)

Ŵ [ f ]Ŵ [g] =
∫ ∫ d4 p

(2π)4
d4k
(2π)4 f̃ (p)g̃(k)eipµ x̂µ

eikν x̂ν
(2.16)

Using the BCH formula given by Eq. (2.8), we find

Ŵ [ f ]Ŵ [g] =
∫ ∫ d4 p

(2π)4
d4k
(2π)4 f̃ (p)g̃(k)e−

i
2 Θµν pµkν ei(p+k)µ x̂µ

,

=
∫ ∫ d4 p

(2π)4
d4k
(2π)4 f̃ (p)g̃(q− p)e−

i
2 Θµν pµqν eiqµ x̂µ

,

=
∫ d4q

(2π)4 h̃(q)eiqµ x̂µ
= Ŵ [h], (2.17)

where we use this change q = p + k and the fact that Θµν = −Θνµ is an anti-symmetric
tensor. It is clear that, in the limit of the commutative spacetime, the function h̃(p) is
defined by the ordinary product h̃(p) ∝ ( f̃ .g̃)(p), while in the NC case this product is

deformed and is replaced by a new notation called star product h̃(p) ∝ (̃ f ∗ g)(p), so the
Eq. (2.17) becomes [130]:

Ŵ [ f ]Ŵ [g] = Ŵ [ f ∗ g], (2.18)

According to our previous result (2.14), we can define the function ( f ∗ g)(x) by using the
inverse transform of the Weyl operator to the above Eq. (2.18), is given by [196]√

det(2πΘ)Tr
(
Ŵ [ f ∗ g]∆(x̂, x)

)
= ( f ∗ g)(x). (2.19)

where the function ( f ∗ g)(x) is the Fourier inverse transformation of the function h̃(q)
given in Eq. (2.17), which is given by [200, 201]

( f ∗ g)(x) = f (x)e
i
2
←−
∂ µΘµν−→∂ ν g(x),

= f (x)g(x) +
∞

∑
n=1

(
i
2

)n 1
n!

Θµ1ν1 ...Θµnνn ∂µ1 ...∂µn f (x)∂ν1 ...∂νn g(x). (2.20)

The above expression is the Groenewold-Moyal-Weyl product or star product in the NC
spacetime R4

Θ, and it is clear that for Θ = 0 we recover the habitual expression of the
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product in the commutative spacetime. Also, we can write the above expression in the
second order in Θ.

( f ∗ g)(x) = f (x)g(x) +
i
2

Θµν∂µ f (x)∂νg(x)− 1
8

ΘµνΘρη∂µ∂ρ f (x)∂ν∂η g(x) +O(Θ3).

(2.21)

In the remaining calculations in this thesis, we use only the second order in Θ of the star
product.

2.2.3 Seiberg-Witten map

In one of the significant theoretical papers [160], N. Seiberg and E. Witten demonstrated
that there is a gauge transformation that gives an important correspondence between the
ordinary gauge fields and the NC gauge ones. This transformation is called the SW map
and it’s given by [160].

Â(A, Θ) + δ̂λ̂ Â(A, Θ) = Â(A + δλ A, Θ), (2.22)

where δ̂λ̂ and δλ denote the infinitesimal variations under the NC and commutative gauge
transformation, while for the quantities Â(A), λ̂(λ, A) are denoted respectively the NC
gauge field and NC gauge parameter, while A and λ represent the commutative gauge
field and the commutative gauge parameter, respectively.

δλ Aµ = ∂µλ + i
[
λ, Aµ

]
≡ Dµλ, (2.23a)

δ̂λ̂ Â(A, Θ) = ∂µλ̂ + i
[
λ̂, Â(A, Θ)

]
∗ ≡ D̂µλ̂. (2.23b)

where ∗ denotes the star product and it’s given by Eq. (2.20). According to the SW map,
the NC gauge field and gauge parameter are a function of the commutative ones, and that
allows us to write the NC gauge fields as a power series in the NC parameter Θ.

λ̂ = λ + λ(1) + λ(2) + ... + λ(n) + ..., (2.24a)

Âµ = Aµ + A(1)
µ + A(2)

µ + ... + A(n)
µ + ..., (2.24b)

F̂µν = Fµν + F(1)
µν + F(2)

µν + ... + F(n)
µν + ... . (2.24c)

where (F̂µν = ∂µ Âν − ∂ν Âµ-i
[
Âµ, Âν

]
∗ ) is the NC field strength of the NC gauge field Âµ.

The first-order solution to the Eq. (2.22) for the gauge fields is given in the original paper
[160] by:

λ(1) =
1
4

Θkl {Ak, ∂lλ} , (2.25a)

A(1)
µ =

1
4

Θkl {Ak, (∂l Aµ + Flµ)
}

, (2.25b)

F(1)
µν =

1
4

Θkl(2
{

Fµk, Flν
}
−
{

Ak, (Dl Fµν + ∂l Fµν)
}
). (2.25c)



2.3 deformed gauge gravity 33

It is worthy to note that the above solutions are not unique; we can add more terms of
homogeneous solutions with an arbitrary coefficient. The second-order solutions are given
in Ref. [194]. In order to write the second-order solution as a function of the first-order
one, are given in Ref.[195]

λ(2) = −1
8

Θµν
({

A(1)
µ , ∂νλ

}
+
{

Aµ, ∂νλ(1)
})
− i

16
ΘklΘµν

[
∂k Aµ, ∂l∂νλ

]
, (2.26a)

A(2)
µ = −1

8
Θρν

({
A(1)

ρ , (∂ν Aµ + Fνµ)
}
+
{

Aρ, (∂ν A(1)
µ + F(1)

νµ )
})

− i
16

ΘρνΘαβ
[
∂α Aρ, ∂β(∂ν Aµ + Fνµ)

]
, (2.26b)

F(2)
µν = −1

8
Θρη

({
Aρ, ∂η F(1)

µν + (Dη Fµν)
(1)
}
+
{

A(1)
ρ , (∂η Fµν + Dη Fµν)

(1)
}
− 2

{
Fµρ, F(1)

νη

}
−2
{

F(1)
µρ , Fνη

})
− i

16
ΘρηΘαβ

([
∂α Aρ, ∂β(∂η Fµν + Dη Fµν)

]
− 2

[
∂αFµρ, ∂βFνη

])
. (2.26c)

For a solution in high order, we refer the readers to Ref. [195].

2.3 deformed gauge gravity

As we see in the previous chapter Sec. 1.4, the gravitational gauge fields in the gauge
theory of gravity are described by the tetrads ea

µ and the spin connection ωab
µ = −ωba

µ

fields in the commutative dS group SO(4, 1), while for the NC dS gauge symmetry, the
deformed gauge fields are denoted by êa

µ(x, Θ) and ω̂ab
µ (x, Θ). According to the previous

section, the deformed gauge field can be obtained using the commutative ones by the use
of the SW map. For that, the Eq. (2.22) for the spin connection can be written as follows
[161]

ω̂ab
µ (ω, Θ) + δλ̂ω̂ab

µ (ω, Θ) = ω̂ab
µ (ω + δλω, Θ) (2.27)

The solution of this equation can be obtained in series of power in Θ up to the second
order,

ω̂ab
µ (x) = ωab

µ + Θνρωab
µνρ (x) + ΘνρΘλτωab

µνρλτ (x) +O(Θ3). (2.28)

where the components ωab
µνρ (x) and ωab

µνρλτ (x) are given by

ωab
µνρ (x) =

1
4
{

ων, ∂ρωµ + Fρµ

}ab , (2.29)

ωab
µνρλτ (x) =

1
32

(
−
{

ωλ, ∂τ

{
ων, ∂ρωµ + Fρµ

}}
+ 2

{
ωλ,

{
Fτν, Fµρ

}}
−
{

ωλ,
{

ων, DρFτµ + ∂ρFτµ

}}
−
{{

ων, ∂ρωλ + Fρλ

}
,
(
∂τωµ + Fτµ

)}
+ 2

[
∂νωλ, ∂ρ

(
∂τωµ + Fτµ

)] )ab , (2.30)

In a similar way, the SW map for the deformed tetrad fields êa
µ(x, Θ) is given by:

êa
µ(e, Θ) + δλ̂ êa

µ(e, Θ) = êa
µ(e + δλe, Θ) (2.31)
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The solution to the above equation is obtain as a series in the power of Θ up to the second-
order [161]:

êa
µ(x, Θ) = ea

µ(x)− iΘνρea
µνρ(x) + ΘνρΘλτea

µνρλτ(x) +O(Θ3) (2.32)

where:

ea
µνρ =

1
4
[ωac

ν ∂ρed
µ + (∂ρωac

µ + Fac
ρµ)e

d
ν]ηcd (2.33)

ea
µνρλτ =

1
32

[
2{Fτν, Fµρ}abec

λ −ωab
λ (DρFcd

τµ + ∂ρFcd
τµ)e

m
ν ηdm

−{ων, (DρFτν + ∂ρFτν)}abec
λ − ∂τ{ων, (∂ρωµ + Fρµ)}abec

λ

−ωab
λ

(
ωcd

ν ∂ρem
µ +

(
∂ρωcd

µ + Fcd
ρµ

)
em

ν

)
ηdm + 2∂νωab

λ ∂ρ∂τec
λ

−2∂ρ

(
∂τωab

µ + Fab
τµ

)
∂νec

λ − {ων, (∂ρωλ + Fρλ)}ab∂τec
µ

−
(
∂τωµ + Fτµ

) (
ωcd

ν ∂ρem
λ +

(
(∂ρωλ + Fρλ)

)
em

ν

)
ηdm

]
ηcb (2.34)

and

{α, β}ab =
(

αacβdb + βacαdb
)

ηcd, [α, β]ab =
(

αacβdb − βacαdb
)

ηcd (2.35)

DµFab
ρσ = ∂µFab

ρσ+
(

ωac
µ Fdb

ρσ + ωbc
µ Fda

ρσ

)
ηcd (2.36)

The complex conjugate êa†
µ (x, Θ) of the deformed tetrad fields is obtained from the her-

mitian conjugate of the relation (2.32):

êa†
µ (x, Θ) = ea

µ(x) + iΘνρea
µνρ(x) + ΘνρΘλτea

µνρλτ(x) +O(Θ3) (2.37)

Where the ∗-inverse of êa
µ is denoted by êµ

a :

êµ
a (x, Θ) = eµ

a (x)− iΘνρeµ
aνρ(x) + ΘνρΘλτeµ

aνρλτ(x) +O(Θ3) (2.38)

Where eµ
aνρ and eµ

aνρλτ can be computed using (êµ
a ∗ êa

µ = δb
a):

eµ
aνρ = −eα

a eb
ανρ eµ

b +
1
2

∂νeα
a ∂ρeb

α eµ
b , (2.39)

eµ
aνρλτ = −eα

a eb
ανρλτ eµ

b +−ea
ανρ eb

αλτ eµ
b +

1
4

∂ν∂λeα
a ∂ν∂λeb

α eµ
b

− 1
2
(∂νeα

a ∂ρeb
αλτ eµ

b + ∂νeα
aλτ ∂ρeb

α eµ
b ) (2.40)

The NC Riemann tensor can also be expanded in powers of Θ:

F̂ab
µν = Fab

µν + iΘρτ Fab
µνρτ + ΘρτΘκσFab

µνρτκσ + O(Θ3) , (2.41)

where

Fab
µνρτ = ∂µωab

νρτ + (ωac
µ ωdb

νρτ + ωac
µρτ + ωdb

ν −
1
2

∂ρωac
µ ∂τωdb

ν )ηcd − (µ↔ ν) (2.42)
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and

Fab
µνρτκσ = ∂µωab

νρτκσ + (ωac
µ ωdb

νρτκσ + ωac
µρτκσ + ωdb

ν −ωac
µρτωdb

νκσ −
1
4

∂ρ∂κωac
µ ∂τ∂σωdb

ν )ηcd

− (µ↔ ν) , (2.43)

where ωab
µνρ and ωab

µνρλτ are given by (2.30) and (2.30)
Now we can compute the NC scalar curvature F̂ using the NC curvature tensor F̂ab

µν and
the deformed tetrad fields êa

µ, which are given by:

F̂ = êµ
a ∗ F̂ab

µν ∗ êν
b , (2.44)

The general expression of the scalar curvature, expanded in power of Θ, is:

F̂ = F + ΘρτΘκσ(eµ
a Fab

µνρτκσeν
b + eµ

aρτκσFab
µνeν

b + eµ
a Fab

µνeν
bρτκσ − eµ

aρτ Fab
µνeν

bκσ

− eµ
aρτ Fab

µνκσeν
b − eµ

a Fab
µνρτeν

bκσ) + O(Θ4) . (2.45)

where F is a commutative scalar curvature and the components eµ
bκσ, eµ

bρτκσ, Fab
µνρτ and

Fab
µνρτκσ are given by (2.39), (2.40), (2.42) and (2.43), respectively.

2.3.1 Application to the Schwarzschild black hole

The deformed Schwarzschild dS metric can be determined using the same ansatz (1.64)
and (1.65). Firstly, we need to obtain the corresponding components of the deformed tetrad
fields êa

µ (x, Θ) and their complex conjugated êa
µ
+ (x, Θ) given by the Eqs. (2.33) and (2.37).

Taking only space-space noncommutativity, Θ0i = 0 (due to the known problem of unitar-
ity), we choose the coordinate system so that the parameters Θµν are given as:

Θµν =


0 0 0 0

0 0 Θ 0

0 −Θ 0 0

0 0 0 0

 , µ, ν = 0, 1, 2, 3. (2.46)

The non-zero components of the tetrad fields êa
µ (x, Θ) are:

ê1
1 =

1
A

+
A′′

8
Θ2 + O(Θ3),

ê1
2 = − i

4
(

A + 2 r A′
)

Θ + O(Θ3),

ê2
2 = r +

1
32
(
7A A′ + 12 r A′2 + 12 r A A′′

)
Θ2 + O(Θ3),

ê3
3 = r sin θ − i

4
(cos θ)Θ +

1
8

(
2r A′2 + rAA′′ + 2AA′ − A′

A

)
(sin θ)Θ2 + O(Θ3),

ê0
0 = A +

1
8
(
2 r A′3 + 5 r A A′ A′′ + r A2 A′′′ + 2 A A′2 + A2 A′′

)
Θ2 + O(Θ3) , (2.47)
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where A′, A′′, A′′′ are the first, second, and third derivatives of A(r),with respect to r
coordinate, with A2 given in (1.77).

In the NC spacetime, the ordinary relation of the metric (1.78) is written by the formula
given in Ref. [162].

ĝµν(x, Θ) =
1
2

[
êa

µ ∗ êb†
ν + êa

ν ∗ êb†
µ

]
ηab (2.48)

Then,we use this new definition, (2.48), to obtain the following: non-null components of
the real deformed metric ĝµν (x, Θ) up to the second order:

ĝ00 (x, Θ) = −1
4

(
2 r A A′3 + r A3 A′′′ + A3 A′′ + 2 A2 A′2 + 5 r A2 A′ A′′

)
Θ2

− A2 + O(Θ4), (2.49a)

ĝ1 1 (x, Θ) =
1

A2 +
1
4

A′′

A
Θ2 + O(Θ4), (2.49b)

ĝ22 (x, Θ) = r2 +
1
16

(
A2 + 11 r A A′ + 16 r2 A′2 + 12 r2 A A′′

)
Θ2 + O(Θ4), (2.49c)

ĝ33 (x, Θ) = +
1

16

[
4
(

2 r A A′ − r
A′

A
+ r2 A A′′ + 2 r2 A′2

)
sin2 θ + cos2 θ + 4

]
Θ2

+ r2 sin2 θ + O(Θ4). (2.49d)

For Θ→ 0, we obtain the commutative type-Schwarzschild metric solution with .
It is worth to note that, the expressions for the NC corrections to the deformed tetrad

fields and NC metric elements are the same as the ones obtained in [149, 150, 162] except
for the element ĝ33, where we found a new term ( 1

4 Θ2).
Now, if we insert A2 = 1− 2m

r into eqs. (2.49a)-(2.49d), we obtain the deformed Schwarz-
schild metric with corrections up to the second-order in Θ. The non-zero metric compo-
nents are:

ĝ00 = −
(

1− 2m
r

)
−
(

m(4r− 11m)

4r4

)
Θ2 . (2.50a)

ĝ11 =

(
1− 2m

r

)−1

+

(
m2(2r− 3m)

4r2(2m− r)2

)
Θ2 , (2.50b)

ĝ22 = r2 +

(
34m2 − 17mr + r2

16r(r− 2m)

)
Θ2 , (2.50c)

ĝ33 = r2 sin2 θ +

(
cos2 θ(−4m2 + 2mr + r2) + 4(m2 − 3mr + r2)

16r(r− 2m)

)
Θ2 . (2.50d)

This deformed Schwarzschild metric was obtained for the first time in Ref. [162] (except
the ĝ33), and in the limit Θ→ 0, the commutative solution is recovered (1.11).



3
G E O M E T R I C A L P R O P E RT I E S O F B L A C K H O L E S I N
N O N - C O M M U TAT I V E G A U G E T H E O RY

In this present chapter, we investigate the effect of non-commutativity in the geometry of some BHs
metric by computing the NC correction to a general form of spherical symmetric metric by using the
SW maps and star product between the tetrad field. In this study, we investigate some geometrical
properties of two types of BHs in the presence of this geometry, which are the Schwarzschild BH
[167] and the RN one, where we present the effect of this geometry on both singularity and the
event horizon.

This chapter is organized as follows: In Sect. 3.1, we present a NC correction to a gen-
eral form of a spherical symmetric metric using a SW maps and star product between a
non-diagonal form of tetrad fields. In Sect. 3.2, we present the deformed metric of Schwarz-
schild in the context of the NC gauge theory of gravity. Then we discussed some geomet-
rical properties of NC Schwarzschild BH and their formation by the collapsing matter in
this geometry. In final Sects. 3.3, we show the new consequence of the non-commutativity
on the geometrical properties of the NC RN BH.

3.1 nc stationary black hole in gauge theory of gravity

In the last section of the previous chapter, we see the construction of the NC metric in
gauge theory using a Schwarzschild type metric with a diagonal ansatz of tetrad field
(1.64). However, in this chapter, we construct a more general form of the NC metric in
which we use a non-diagonal tetrad field, a general type of static metric, and spherical
symmetry. For that, we take the following metric:

ds2 = −A2(r)dt2 + B2(r)dr2 + r2(dθ2 + sin2 θdφ2) (3.1)

where A(r) and B(r) are functions related only to the radius r, and for the tetrad fields we
choose a general form of non-diagonal, which satisfied the relation (1.78), and is written
as follows:

ea
µ =


A(r) 0 0 0

0 B(r) sin θ cos φ r cos θ cos φ −r sin θ sin φ

0 B(r) sin θ sin φ r cos θ sin φ r sin θ cos φ

0 B(r) cos θ −r sin θ 0

 (3.2)

37
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We note that this form of tetrad field can be used for a stationary observer at spatial infinity
[137].

The non-zero component of the spin connection for these tetrad fields is given by (see
Appendix. A):

ω01
µ =

(
A′(r)
B(r)

sin θ cos φ, 0, 0, 0
)

, ω02
µ =

(
A′(r)
B(r)

sin θ sin φ, 0, 0, 0
)

,

ω03
µ =

(
A′(r)
B(r)

cos θ, 0, 0, 0
)

, ω12
µ =

(
0, 0, 0, [1− 1

B(r)
] sin2 θ

)
,

ω13
µ =

(
0, 0,−[1− 1

B(r)
] cos φ, [1− 1

B(r)
] sin θ cos θ sin φ

)
,

ω23
µ =

(
0, 0,−[1− 1

B(r)
] sin φ,−[1− 1

B(r)
] sin θ cos θ cos φ

)
. (3.3)

Using the relations (1.55) in the limit of λ → 0, to compute the non-null components of
the curvature tensor Fab

µν (see Appendix. A):

F01
01 = −

[
A′′(r)
B(r)

− A′(r)B′(r)
B2(r)

]
sin θ cos φ, F01

02 = −A′(r)
B2(r)

cos θ cos φ,

F01
03 =

A′(r)
B2(r)

sin θ sin φ, F02
01 = −

[
A′′(r)
B(r)

− A′(r)B′(r)
B2(r)

]
sin θ sin φ,

F02
02 = −A′(r)

B2(r)
cos θ sin φ, F02

03 = −A′(r)
B2(r)

sin θ cos φ, F03
02 =

A′(r)
B2(r)

sin θ,

F03
01 = −

[
A′′(r)
B(r)

− A′(r)B′(r)
B2(r)

]
cos θ, F12

23 =

[
1− 1

B2(r)

]
sin θ cos θ,

F12
13 =

B′(r)
B2(r)

sin2 θ, F13
12 = − B′(r)

B2(r)
cos φ, F13

13 =
B′(r)
B2(r)

sin θ cos θ sin φ,

F13
23 = −

[
1− 1

B2(r)

]
sin2 θ sin φ, F23

13 = − B′(r)
B2(r)

sin θ cos θ cos φ,

F23
12 = − B′(r)

B2(r)
sin φ, F23

23 =

[
1− 1

B2(r)

]
sin2 θ cos φ. (3.4)

where A′(r), B′(r), and A′′(r) denote the derivatives of first- and second-order with respect
to the r-coordinate.

In this case, we took only space-space non-commutativity, Θ0i = 0, and the best choice
of metric for the NC parameter Θµν in this case is r− φ and r− θ:

Θµν =


0 0 0 0

0 0 a b

0 −a 0 0

0 −b 0 0

 , µ, ν = 0, 1, 2, 3 (3.5)

where a = b = Θ for a sample case of the same deformation in all directions, and this
notation a, b is useful if we duel with special cases as r− θ (a = Θ, b = 0), r− φ (a = 0, b =

Θ), or for the general case r − θ, r − φ. The non-null components of the deformed gauge
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fields êa
µ can be written in the second-order on the NC parameter as follows (see Appendix.

A):

ê0
0 = A(r) +

(a2 + b2 sin2 θ)

32B4(r)
{

16rA′(r)B′2(r)− 4B(r)(4rB′(r)A′′(r) + A′(r)(2B′(r)

+rB′′(r))) + B3(r)(A′(r)B′(r) + 4A′′(r)) + B2(r)(−3A′(r)B′(r) + 4(A′′(r)

+rA′′′(r)))
}
+O(a3, b3, ab2, a2b) , (3.6a)

ê1
1 = B(r) sin θ cos φ +

iB′(r)
4

(b sin θ sin φ− a cos θ cos φ) +
b2 sin θ

64B3(r)
{

8(2B′(r)

−B(r)B′′(r)) sin2 θ + B3(r)B′′(r)(3 + cos 2θ) + B(r)(B′2(r)− B(r)B′′(r))(1 + 3

× cos 2θ)} cos φ +
a2 sin θ

32B3(r)
{
(8− B(r))B′2(r) + B(r)B′′(r)(−4 + B(r) +B2(r))

}
× cos φ +

ab cos θ

8B2(r)
{

B′2(r) + B(r)B′′(r)(−1 + B(r))
}

sin φ +O(a3, b3, ab2, a2b) , (3.6b)

ê2
1 = B(r) sin θ sin φ− iB′(r)

4
(a cos θ sin φ + b sin θ cos φ) +

a2 sin θ

32B3(r)
{(B(r)− 8)

×B′(r)2 + (B(r)2 + B(r)− 4)B(r)B′′(r)
}

sin φ +
b2 sin θ

64B(r)3 {(B(r)(1 + 3cos2θ)

+16 sin2 θ)B′(r)2 + B(r)B′′(r)(B(r)2(3 + cos2θ)− B(r)(1 + 3cos2θ)− 8 sin2 θ)
}

× sin φ +
ab cos θ

8B(r)3

{
B(r)2B′′(r)− B(r)B′(r)− B(r)3B′′(r)

}
cos φ

+O(a3, b3, ab2, a2b) , (3.6c)

ê3
1 = B(r) cos θ +

B′(r) sin θ

4
a +

a2 cos θ

32B(r)3

{
(8− B(r))B′(r)2 + B(r)B′′(r)(−4 + (B(r)

+1)B(r))} − b2 sin2 θ

32B(r)3

{
B′(r)2(−8 + 3B(r)) + B(r)B′′(r)(4− 3B(r) + B(r)2)

}
× cos θ +O(a3, b3, ab2, a2b) , (3.6d)

ê1
2 = r cos θ cos φ− ib

4
[B(r)− 1] cos θ sin φ +

ia
4B(r)2

[
B(r)2 − B(r) + 2rB′(r)

]
sin θ

× cos φ +
a2 cos θ

32B(r)4

{
2B(r)3B′(r) + 36rB′(r)2 + B(r)2(3B′(r) + 8rB′′(r))− (7B′(r)

+16rB′(r)2 + 12rB′′(r))B(r)
}

cos φ− ab sin θ

32B(r)4

{
B(r)3B′(r) + 20rB′(r)2 + 8rB(r)2

×B′′(r) + B(r)(B′(r)− 16rB′(r)2 − 8rB′′(r))
}

sin φ +
b2 cos θ

32B(r)4

{
B(r)4B′(r)(−3

+cos2θ)− B(r)3

2
B′(r)(−9 + 5cos2θ) + sin2 θ

[
16rB′(r)2 − B(r)2(B′(r)− 4rB′′(r))

−4B(r)(2B′(r) + 2rB′(r)2 + rB′′(r))
]}

cos φ +O(a3, b3, ab2, a2b) , (3.6e)

ê2
2 = r cos θ sin φ− ib cos θ

4
[B(r)− 1] cos φ +

ia sin θ

4B(r)2

[
B(r)2 − B(r) + 2rB′(r)

]
sin φ

+
a2 cos θ

32B(r)4

{
2B(r)3B′(r) + 36rB′(r)2 + B(r)2(3B′(r) + 8rB′′(r))− B(r)(7B′(r)

+16rB′(r)2 + 12rB′′(r))
}

sin φ +
ab sin θ

32B(r)4

{
B(r)3B′(r) + 20rB′(r)2 + 8rB(r)2B′′(r)
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+B(r)(B′(r)− 16rB′(r)2 − 8rB′′(r))
}

cos φ +
b2 cos θ

32B(r)4

{
B(r)4B′(r)(−3 + cos2θ)− 1

2

×B(r)3B′(r)(−9 + 5cos2θ) + sin2 θ
[
16rB′(r)2 − B(r)2(B′(r)− 4rB′′(r))− 4(2B′(r)

+2rB′(r)2 + rB′′(r))B(r)
]}

sin φ +O(a3, b3, ab2, a2b) , (3.6f)

ê3
2 = −r sin θ +

ia cos θ

4B(r)2 (2rB′(r) + B(r)2 − B(r))− a2 sin θ

32B4(r)
{

2B(r)3B′(r) + 36rB′(r)2

+B(r)2(3B′(r) + 8rB′′(r))− B(r)(7B′(r) + 16rB′(r)2 + 12rB′′(r))
}
+

b2 sin θ

64B(r)4

{
B′(r)

×B(r)3(−1 + 5 cos 2θ)− 16rB(r)B′(r)2 cos2 θ + sin2 θ
[
16B(r)B′(r) + 4B(r)4B′(r)

−32rB′(r)2 + 8rB(r)B′′(r)
]
+ B(r)2((5− cos 2θ)B′(r) + 8rB′′(r) cos2 θ)

}
+O(a3, b3, ab2, a2b) , (3.6g)

ê1
3 = −r sin θ sin φ− ia

4
(−1 + B(r)) cos θ − ib sin θ cos φ

4B(r)2

{
B(r)3 cos2 θ − B(r)2 + (B(r)

−2rB′(r)) sin2 θ
}

sin φ +
a2 sin θ

32B4(r)
{

B(r)2B′(r)(3− 5B(r) + 4B(r)2)− 16rB′(r)2

+4B(r)(2B′(r) + rB′′(r))
}

sin φ− ab cos θ

32B(r)4

{
B′(r)(4B(r)4 cos 2θ − 1

2
B(r)3(−11

+19 cos 2θ))− sin2 θ
[
18B(r)2B′(r) + 20rB′(r)2 + B(r)(B′(r)− 8rB′′(r))

]}
cos φ

+
b2 sin θ

32B(r)4

{
−2B(r)3B′(r) + 2B(r)4B′(r) cos2 θ + sin2 θ

[
−37rB′(r)− B(r)2(3B′(r)

+8rB′′(r)) + B(r)(7B′(r) + 16rB′(r)2 + 12rB′′(r))
]}

sin φ +O(a3, b3, ab2, a2b) , (3.6h)

ê2
3 = r sin θ cos φ +

ia
4
(−1 + B(r)) cos θ cos φ− ib sin θ

4B(r)2

{
−B(r)2 + B(r)3 cos2 θ + (B(r)

−2rB′(r)) sin2 θ
}

sin φ− a2 sin θ

32B4(r)
{

B(r)2B′(r)(3− 5B(r) + 4B(r)2)− 16rB′(r)2

+4B(r)(2B′(r) + rB′′(r))
}

cos φ− ab cos θ

32B(r)4

{
B′(r)(4B(r)4 cos 2θ − 1

2
B(r)3(−11

+19 cos 2θ))− sin2 θ
[
18B(r)2B′(r) + 20rB′(r)2 + B(r)(B′(r)− 8rB′′(r))

]}
sin φ

+
b2 sin θ

32B(r)4

{
−2B(r)3B′(r) + 2B(r)4B′(r) cos2 θ + sin2 θ

[
−37rB′(r)− B(r)2(3B′(r)

+8rB′′(r)) + B(r)(7B′(r) + 16rB′(r)2 + 12rB′′(r))
]}

cos φ +O(a3, b3, ab2, a2b) , (3.6i)

ê3
3 =

ib sin2 θ cos θ

4B(r)2

[
(−B(r) + B(r)3 + 2rB′(r))

]
+

ab sin θ

64B(r)4

{
sin2 θ

[
−2B(r)B′(r)

−40rB′(r)2 + 16rB(r)B′′(r)
]
+ B(r)

[
18B(r)B′(r)− 19B(r)2B′(r) + 8B(r)3B′(r)

]
× cos 2θ + B(r)(6B(r)B′(r)− 13B(r)2B′(r) + 32rB′(r)2 − 16rB(r)B′′(r))

}
+O(a3, b3, ab2, a2b) . (3.6j)

In the commutative limit a = b = 0, we recover the commutative tetrad fields given by eq.
(3.2)
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By using the definition (2.48), we obtain the non-zero components of the NC metric ĝµν

up to the second-order in Θ (see Annex. A).

−ĝ00 = A2(r) +
A(r)

16B(r)4

{
16rA′(r)B′2(r) + B3(r)(A′(r)B′(r) + 4A′′(r))− 4B(r)(4rB′(r)A′′(r)

+A′(r)(2B′(r) + B′′(r))) + B2(r)(−3A′(r)B′(r) + 4(A′′(r) + rA′′′(r)))
}
(a2 + b2 sin2(θ))

+O(a4, b4, a2b2, ..), (3.7a)

ĝ11 = B2(r) +
(a2 + b2 sin2(θ))

16B2(r)

{
8B′2(r) + 9B3(r)B′′(r) + B2(r)(9B′2(r) + B′′(r))− B(r)(B′2(r)

+4B′′(r))
}
+O(a4, b4, a2b2, ..), (3.7b)

ĝ12 = − sin(2θ)b2

32B2(r)

{
6B3(r)B′(r) + 3rB′2(r)− B(r)(B′(r) + rB′′(r))− B2(r)(11B′(r) + 5rB′′(r))

}
+O(a4, b4, a2b2, ..) , (3.7c)

ĝ22 = r2 +
b2

32B4(r)

{
9B4(r) + (2B6(r)− 12B5(r))cos2θ + 9B4(r)cos2θ + rB3(r)B′(r)(5− cos2θ)

−4rB4(r)B′(r)(2 + cos2θ) +
[
−6rB2(r)B′(r) + 32r2B′2(r)− 8rB(r)(2B′(r) + rB′′(r))

]
sin2 θ

}
+

a2

16B4(r)

{
9B4(r) + 40r2B′2(r) + 2B3(r)(−3 + rB′(r))− rB(r)(11B′(r) + 32rB′2(r)

+12rB′′(r)) + B2(r)(1 + 27rB′(r) + 16r2B′′(r))
}
+O(a4, b4, a2b2, ..) , (3.7d)

ĝ33 = r2 sin2(θ) +
a2

32B4(r)

{
2B6(r)cos2θ + 2B5(r)(−3 + cos2θ) + B4(r)(9 + cos2θ − 8rB′(r))

+
[
10rB3(r)B′(r)− 6rB2(r)B′(r) + 32r2B′2(r)− 8rB(r)(2B′(r) + rB′′(r))

]
sin2 θ

}
+

b2 sin2 θ

16B4(r)

{
9B4(r) + 2rB3(r)B′(r) + (B6(r)− 6B5(r)− 6rB4(r))cos2θ + sin2 θ

[
40r2B′2(r)

−6B3(r) + rB(r)(11B′(r) + 32rB′2(r) + 12rB′′(r)) + B2(r)(1 + 27rB′(r) + 16r2B′′(r))
]}

+O(a4, b4, a2b2, ..) . (3.7e)

It is clearly that, in the commutative limit when a = b = 0, we recover the usual metric
(3.1), and for the case a = Θ, b = 0 or in the equatorial plane θ = π

2 we can obtain a
diagonal form of the NC metric. As we see above, the NC metric has a non-diagonal form,
and its line element is written as follows:

dŝ2 = −ĝ00dt2 + ĝ11dr2 + 2ĝ12drdθ + ĝ22dθ2 + ĝ33dφ2 . (3.8)

Note that the NC spacetime metric (3.8) is static but not spherically symmetric due to the
presence of the cross product term drdθ, compared to the commutative metric (3.1), which
is static and spherically symmetric. Moreover, that is due to the presence of a coupling
between r and θ induced by non-commutativity in the plane of rotation, which disappears
when the non-commutativity goes to zero (a = b = 0).

In our choice of NC tensor Θµν, the rotational invariance is broken but the translational
invariance remains; for more detail, see Ref. [202]. The broken rotational invariance occurs
in the (r, θ) plane in spherical coordinates. Thus, the metric is non-diagonal in the presence
of non-commutativity, leading to only one non-zero off-diagonal term, ĝ12. We note that
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we have chosen non-commutativity between just a couple of two coordinates r − θ and
r − φ, while for the case between the angle coordinates θ − φ provide a problem in the
dimension in NC parameter, which is different from the previous cases, and this problem
can be solved by using a normalization constant to keep a homogeneous dimension of Θ
in all possibility.

3.2 non-commutative schwarzschild black hole

The deformed Schwarzschild BH can be obtained by inserting the Schwarzschild potential,

A(r) = B−1(r) =
(
1− 2m

r

) 1
2 , into the above components of the deformed metric ĝµν, and

that gives us

−ĝ00 =

(
1− 2m

r

)
+


m
(

88m2 + mr
(
−77 + 15

√
1− 2m

r

)
− 8r2

(
−2 +

√
1− 2m

r

))
16r4(−2m + r)

 (a2

+ b2 sin2(θ)) +O(a3, b3, ab2a2b), (3.9a)

ĝ11 =

(
1− 2m

r

)−1
+


m
(

12m2 + mr
(
−14 +

√
1− 2m

r

)
− r2

(
5 +

√
1− 2m

r

))
8r2(r− 2m)3

 (a2

+ b2 sin2(θ)) +O(a3, b3, ab2a2b), (3.9b)

ĝ12 = −b2


m
(
−4m2 + r2

(√
1− 2m

r − 7
)
+ mr

(
16− 17

√
1− 2m

r

))
32r(2m− r)3

 sin(2θ)

+O(a3, b3, ab2a2b), (3.9c)

ĝ22 = r2 +


m2r

(
50− 6

√
1− 2m

r

)
+ mr2

(
−43 + 23

√
1− 2m

r

)
+ 2r3

(
5− 3

√
1− 2m

r

)
32r(r− 2m)2

+

−8m3 + cos 2θ

[
8m3 + 6m2r

(
5 +

√
1− 2m

r

)
+ mr2

(
−37 + 13

√
1− 2m

r

)
+ 2r3 (5

32r(r− 2m)2

+

−3
√

1− 2m
r

)]
32r(r− 2m)2

 b2 −


68m3 + 18mr

(
−6 +

√
1− 2m

r

)
+ mr2

(
57− 29

√
1− 2m

r

)
16r(r− 2m)2

+

2r3
(
−5 + 3

√
1− 2m

r

)
16r(r− 2m)2

 a2 +O(a3, b3, ab2a2b) (3.9d)

ĝ33 = r2 sin2 θ +


−8m3 + m2r

(
50− 6

√
1− 2m

r

)
+ mr2

(
−43 + 23

√
1− 2m

r

)
+ 2r3 (5

32r(r− 2m)2
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+

−3
√

1− 2m
r

)
+ (r− 2m)

[
4m2 + 3mr

(
−1 +

√
1− 2m

r

)
− 2r2

(√
1− 2m

r

)]
cos 2θ

32r(r− 2m)2

 a2

+


2m2r

(
74− 9

√
1− 2m

r

)
− 68m3 + mr2

(
−97 + 47

√
1− 2m

r

)
+ 4r3

(
5− 3

√
1− 2m

r

)
32r(r− 2m)2

+

[
2m2r

(
−34 + 9

√
1− 2m

r

)
+ 68m3 + mr2

(
17− 11

√
1− 2m

r

)]
cos 2θ

32r(r− 2m)2

 b2 sin2 θ

+O(a3, b3, ab2a2b) (3.9e)

It is clear that all components of the non-zero NC metric ĝµν acquire a singularity at
r = 2m in the NC correction terms, as well as in the component ĝ00, where that is in
contrast to that given in Ref. [162], because it is a consequence of using a general form of
the tetrad field (3.2). As we motioned above, the commutative Schwarzschild metric can
be obtained by setting a = b = 0, and the diagonal form can be obtained in different ways,
for a = Θ, b = 0, or in the equatorial plane θ = π/2 for the two cases a = b = Θ and
a = 0, b = Θ.

3.2.1 Singularity and event horizon

As we know, the Schwarzschild BH is apparently two types of singularity, which are the
coordinate singularity at r ≡ rh = 2m (called the event horizon of Schwarzschild BH) and
the physical one at r = 0, where this one is the only true singularity. In which follow, we
analyze these two singularities in the NC framework.

The physical singularity occurs when the NC line element (3.8) goes to infinity at this
point r = rNC

singularity, and that can be due to the analysis of the profile of ĝ00.
As we see in Fig. 3.1, new behavior of ĝµν are shown in this theory. Whereas now the

non-commutativity of spacetime shifted the singularity of the Schwarzschild BH at r = 0
to the finite radius rNC

singularity = 2m. This result is not available in the diagonal form of the
tetrad in the NC gauge theory, as Refs. [149, 162], or in the other additional theory of non-
commutativity, see Refs. [138, 139, 203–205]. However, this result is similar to one obtained
in the quantum-corrected BH theory as Refs. [206–208], but is observed just in a particular
case for α = rh = 2m, where a represents a minimal distance expected to be on the order of
the Planck length, lp. This result is not a natural one because we need to fix the parameter,
a, for a particular value in order to observe the same result as in Fig. 3.1. Contrary to our
case, in which the singularity of origin is shifted naturally from the quantum structure of
spacetime itself, when we impose the NC property of the geometry on spacetime without
the need to impose any particular value on the NC parameter, Θ. Then, we conclude that
the NC geometry spreads the singularity at the origin of the Schwarzschild BH over a
two-dimensional sphere of the Schwarzschild radius rNC

singularity = 2m as in the quantum-
corrected BH and increases the radius of the event horizon.
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Figure 3.1: Behavior of the NC component ĝ00 for a stationary observer at spatial infinity in the
equatorial plane θ = π/2 as a function of r, for different values of Θ.

To investigate the event horizon in the NC spacetime, we cheek the killing vectors in this
geometry, where we have two killing vectors in the NC spacetime, which are respectively
the time translation and the azimuthal killing vectors, because our deformed line element
(3.8) is independent of t and ϕ. Then we obtain two surfaces in the NC spacetime (3.8): a
static limit surface and event horizons. Firstly, the static limit surface is obtained by solving
ĝ00 = 0, for which we find

rNC
sls = rh

[
1 +

(
4
√

5 + 1
32
√

5

) √
a2 + b2 sin2 θ

rh
+

(
10 +

√
5

128

)
(a2 + b2sin2θ)

r2
h

]
, (3.10)

The spacetime (3.8) has a coordinate singularity at 1
ĝ11(rNC

h )
= 0, which corresponds to the

NC event horizon.

rNC
h = rh

[
1 +

3
8

(
(a2 + b2 sin2 θ)

r2
h

)]
. (3.11)

The NC event horizon has three parameters: rh, Θ (a, b are related to Θ), and the ob-
servation angle θ, while in the commutative spacetime there is only one parameter m. The
limit surface and event horizon obtained in the NC case are in the general case and can
be defined in four scenarios of geometry. For each value of a and b, we have a particular
choice of NC matrix (3.5). The dependence between the event horizon and the observa-
tional angle is a natural result related to the deformation of the spherical symmetry of the
BH, and that is due to the rotation created by non-commutativity in coordinate space. The
radius of the event horizon increases with Θ as well as with the angle θ, and when θ takes
the value π/2, we find the upper bound of the radius of the event horizon. However, when
θ takes the values 0 or π, we find the lower bound of the event horizon (this observation
is available for cases 3 and 4; see Fig. 3.2). The dependence of the NC event horizon on
the observational angle is limited only to the condition of b 6= 0, and that corresponds to
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the choice of r − φ in the NC matrix (see case 3 in Fig. 3.2). This confirms that the NC
parameter Θ plays the role of angular momentum induced by the rotation of the BH due
to the non-commutativity of coordinates.

1)- a = b = 0 2)- a = 0, b = Θ

3)- a = Θ, b = 0 4)- a = b = Θ

Figure 3.2: A schematic picture of Schwarzschild BH in the NC spacetime. The red solid line rep-
resents the commutative Schwarzschild event horizon, the black dotted line represents
the NC event horizon, and the blue dashed line represents the static limit surface. With
Θ = 0.75, the black disk represents the singularity.

3.2.2 Collapse of matter

In astrophysics, the BHs are considered the most mysterious celestial objects; unfortunately,
these objects can’t be observed directly, and only their gravitational effects can be observed,
such as the gravitational wave [2], the motion of stars around the galactic center [4–7, 209,
210], etc. However, raising the curtain on the process of the formation of these objects leads
us to better understand the physics of BHs. The gravitational collapse of matter is the most
popular mechanism to produce a BH, which is considered the final stage of a star’s life.

Stars are considered huge nuclear reactors in the universe, like, for example, the sun
in our solar system. These objects can survive their own gravity because of the pressure
created by their nuclear reaction. This pressure is generated by the energy created by the
nuclear fusion inside the star, in which the light nuclei, such as hydrogen, are burned
into heavy ones, such as helium atoms. When it consumes all its hydrogen fuel, it begins
to use the heavy nuclei as energy, which leads to a decrease in the emission energy that
generates the pressure, and the star begins to cool and collapse under its proper gravity.
At this point, the star has three scenarios for collapse depending on its own mass, and it
is resumed as follow [176]

• M < 1.4M�: The star with this mass collapse to a stable white dwarf.
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• 1.4M� 6 M < 3M�: The white dwarf is unstable1 in this range of mass and continue
collapsing to form a stable neutron star.

• M > 3M�: The neutron star is unstable2 in this range of mass and continue collaps-
ing to form a BH.

In this section, we are only interested in the third scenario, concerning the formation of
BH. Moreover, the Schwarzschild BH is formed when a star with spherical symmetry and
a mass of M = 3M� is collapsing under its own strong gravitational fields. In this scenario,
this mass is collapsing into one single point, r = 0, and this point is called a singularity of
Schwarzschild BH. This BH now is defined by its trapped surface (event horizon) and the
singularity rs = 0, and that is in the commutative case, as we see in the left panel of Fig.
3.3.

time

Collapsing
matter

Collapsing
matter

r h
=

2m rN
C

h

Event
horizon

NC Event
horizon

r
=

0

Singularity Non-commutative
Singularity

r
=

2m

NC gauge theory

black
hole
forms

NC black
hole
forms

Figure 3.3: A schematic picture of the gravitational collapsing matter in the NC spacetime and the
formation of NC Schwarzschild BH.

As we see, when the mass of a star collapsing to a radius rh = 2m under its own gravity
(with respect to the condition on its mass), we obtain an BH and continue to collapse until
collapsing into a zero radius r = 0 (see Fig. 3.3). At this point, we have a Schwarzschild
BH in the commutative spacetime. Unfortunately, this is not the case in the presence of
non-commutativity. In this geometry, when a star with a mass of MNC3, it collapsing to a
size of rNC

h (representing the NC event horizon given by Eq. (3.11)), at this moment a NC
Schwarzschild BH is formed. Also, the matter continues collapsing to a new singularity
at a radius of rNC

singularity = 2m. In this case, the non-commutativity prevents the star from
collapsing mass into a point r = 0, in which the singularity is shifted to a two-dimensional
sphere with a radius of rNC

singularity = 2m, and that is represented in the right panel of Fig.
3.3 and Fig. 3.4.

1 The limit M = 1.4M� is called the Chandrasekhar limit.
2 This M = 3M� called the Oppenheimer-Volkoff limit.
3 This mass is the limit mass of the Oppenheimer-Volkoff limit to obtain an acsBH after collapsing matter, in

the presence of non-commutativity



3.3 non-commutative reissner–nordström black hole 47

Collapsing
matter

Star

Schwarzschild BH

singularity

Commutative case

NC Schwarzschild BH

NC gauge theory
NC

singularity

Figure 3.4: A schematic picture for the collapsing matter of a star in the NC spacetime and the
formation of Schwarzschild BH.

3.3 non-commutative reissner–nordström black hole

In this case, the deformed Reissner-Nordström (RN) BH is obtained by inserting the RN

potential A(r) =
(

1− 2m
r + Q2

r2

) 1
2
, into the deformed metric in Sec. 3.1,
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where Q is the electric charge of the BH. For the case when Q = 0, this deformed metric
reduces to the deformed Schwarzschild solution in the previous Sec. 3.2. Also the commu-
tative RN solution is recover when we set Θ = 0 [8].

3.3.1 Singularity and event horizon
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Figure 3.5: Behavior of ĝ00 in the NC RN spacetime.

The behaviors of the deformed ĝ00 component as a function of r for different Θ with Q
constant (left panel) and for different Q with Θ constant are shown in Fig. 3.5. As we see,
in the NC spacetime there is no problem anymore of two horizons as in the commutative
RN BH, where in this geometry we have only one static limit surface for a charged BH and
the non-commutativity increases its radius rNC

sls . It is worth noting that the NC RN BH has
a physical singularity at the finite radius r+ = m +

√
m2 −Q2 in the NC spacetime in a

similar way to the NC Schwarzschild BH (see Sec. 3.2), where in this case we have a new
degree of freedom, which is the electric charge Q. In addition, the NC geometry removes
the Cauchy horizon of the commutative RN solution at r− = m−

√
m2 −Q2, and the only

existing coordinate singularity is the NC static limit surface rNC
sls > r+ = m +

√
m2 −Q2.

In the left panel, for a fixed electric charge Q and we increase in the NC parameter Θ, the
radius of the static limit surface increases, while in the right panel, for a fixed Θ and we
increase in Q, this radius decreases (the same behavior for the commutative case), so the
role of the NC parameter in the RN spacetime is the same as in the Schwarzschild one (see
Sec. 3.2).
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The corresponding static limit surface and event horizon in the NC RN spacetime can
be obtained by solving ĝ00 = 0 and 1/ĝ11 = 0.
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+
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with
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f = 32m6 − 60m4q2 + 31m2q4 − 3q6 + (32m5 − 44m3q2 + 13mq4)
√

m2 −Q2,

y = 160m6 − 664m4Q2 + 534m2Q4 − 72Q6 + (150m5 − 584m3q2 + 262mq4)
√

m2 −Q2. (3.15)

where rh = r+ = m +
√

m2 −Q2 is the commutative event horizon of the RN BH when
a = b = 0, while for Q = 0 we find the NC Schwarzschild static limit surface and event
horizon (3.10) and (3.11) respectively.

m2-Q2 > 0

m2-Q2 = 0

m2-Q2 < 0

0 1 2 3 4 5 6 7

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

r

g
0
0

Θ=0.0

m2-Q2 > 0

m2-Q2 = 0

m2-Q2 < 0

0 1 2 3 4 5 6 7

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

r

g
0
0

Θ=0.3

Figure 3.6: Representation of ĝ00 for the three conditions of m2 − Q2, for fixed electric charge Q =
0.5 for all cases and different masses m = 0.7, 0.5, 0.3.

As we knew in the commutative spacetime, the RN BH has three conditions on the
quantity m2 − Q2 [8, 211, 212]. Furthermore, the types of BH can be determined by these
conditions: for m2 − Q2 > 0, we have an BH with two horizons; for m2 = Q2, we have
an extremal BH; and for m2 < Q2, we have a non-BH (Fig. 3.6 right panel). But in the
NC geometry, we always have a BH with a singularity at the finite radius r+ and one
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event horizon, whatever the sign of the quantity m2 − Q2 (Fig. 3.6 left panel). This means
non-commutativity corrected this condition when it was not respected and removed the
Cauchy horizon.





4
M O T I O N I N T H E N O N - C O M M U TAT I V E
S PA C E - T I M E

In this present chapter, we investigate the motion of different types of particles in the deformed
spacetime in the presence of non-commutativity in a different framework than in the previous chap-
ter (see Chap. 3). We are interested in two kinds of motion around the deformed black holes, which
are the radial and the circular geodesic [167, 168], where we present the NC correction to each one of
them for different types of particles in different deformed spacetime. Also, we present the discussion
of the stability of circular orbits for both massive and massless particles, together with charged and
uncharged ones. Finally, we examine the four classical experimental tests of GR inspired by the NC
geometry to give an estimation for the lower bound on the NC parameter [167, 169].

This chapter is organized as follows: In Sect. 4.1, we present the NC corrections to the
radial equation of motion for an arbitrary static metric with spherical symmetry, and we
also obtain the NC effective potentials up to the second-order in Θ for a particle in the
NC Schwarzschild spacetime. In Sect. 4.2, we study two types of motion for a massive test
particle in NC Schwarzschild spacetime, and we check the stability of the circular orbitals
by using the Lyapunov exponent. In Sect. 4.3, we present a detailed analysis of the motion
of a massless particle in this deformed spacetime, and we investigate the effect of the
non-commutativity on the BH shadow. In Sects. 4.4, we present the NC correction to the
effective particle in the NC RN spacetime. In Sects. 4.5 and 4.6, we analyze the motion of
a charged or uncharged massive test particle in this geometry. In Sect. 4.7, we present the
constraint of the NC parameter using the four classical tests of GR.

53
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4.1 non-commutative schwarzschild spacetime

The structure of NC spacetime (3.8) in the equatorial plan π
2 can be written as follows:

ds2 = ĝ00(r, Θ)c2dt2 + ĝ11(r, Θ)dr2 + ĝ33(r, Θ)dφ2 (4.1)

where the components ĝµν of the deformed metric (Sec. 3.2) in the case for a = 0 and
b = Θ are given by
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In which follow we use this deformed metric as background for studying the geodesic
motion in the equatorial plan of Schwarzschild spacetime.

The motion of a test particle in the NC spacetime (4.1) can be described by the La-
grangian as in eq. (1.12) with the above deformed metric.

2L =ĝtt(r, Θ)c2 ṫ2 + ĝrr(r, Θ)ṙ2 + ĝφφ(r, Θ)φ̇2 (4.3)

where the dots represent the derivative with respect to the affine parameter, τ, along the
geodesic. As we see, L is independent of t and φ, and that means tow conserved quantities,

E0 = pt = c2 ĝtt(r, Θ)ṫ⇒ ṫ =
E0

c2 ĝtt(r, Θ)
(4.4a)

l = pφ = ĝφφ(r, Θ)φ̇⇒ φ̇ =
l

ĝφφ(r, Θ)
(4.4b)
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which are obtained by using the Euler-Lagrange equation (1.13). To obtain the orbital
equation, we use the following invariance1 of ĝµνUµUν ≡ −h, together with conserved
quantities (4.4a) and (4.4b), we obtain the explicit radial equation of motion ṙ2

ṙ2 = − E2
0

c2 ĝtt(r, Θ)ĝrr(r, Θ)
− 1

ĝrr(r, Θ)

(
l2

ĝφφ(r, Θ)
+ hc2

)
(4.5)

where we shall consider h = m2
0 for massive particles.

We propose the following decomposition of the NC metric: ĝµν

−ĝ00 = A2(r) + Θ2α(r) +O(Θ4) (4.6a)

ĝ11 = B2(r) + Θ2β(r) +O(Θ4) (4.6b)

ĝ33 = r2 + Θ2η(r) +O(Θ4) (4.6c)

where α(r), β(r), and η(r) are a function of r, which can be determined using the deformed
metric components (4.2a), 4.2b, and (4.2d). Using the relations (4.6a), (4.6b), and (4.6c), the
orbital equation (4.5) becomes

ṙ2 =
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As we knew, the non-commutative correction is just a series in the power of Θ, so the
non-commutative terms are so small compared to the commutative terms because it’s just
a correction. Now, we can use this development (1 + x)±n ≈ (1± nx), so we get

ṙ2 =
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By keeping only the lower order in NC parameter Θ, we get

ṙ2 =
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1 where Uµ = c−1 dxµ

dτ denote the 4-velocity.



56 motion in the non-commutative space-time

This is the general equation of orbital motion for any metric with spherical symmetry.
Now, if we take the case of Schwarzschild-type metrics (A(r) = B−1(r)), we get the orbital
equation for a deformed Schwarzschild metric.

ṙ2 =E2 − A2(r)
(

l2

r2 + h
)
−Θ2

{
E2
(

α(r)
A2(r)

+ β(r)A2(r)
)

− l2

r4 η(r)A2(r)− β(r)A4(r)
(

l2

r2 + h
)}

+O(Θ4) (4.10)

Using the deformed metric components (4.2a), (4.2b), and (4.2d), this equation can be
written as:

ṙ2 + Ve f f (r, Θ) = 0 (4.11)

where:

Ve f f (r, Θ) =

(
1− 2m

r

)(
l2

r2 + hc2
)
− E2 + Θ2

−
l2 (1− 2m

r
)

r4


m

(
−17 + 5√

1− 2m
r

)
16r

−3
8

√
1− 2m

r
+

5
8
+

m2
√

1− 2m
r

(−2m + r)2

+ E2

64m3 + m2(−49 + 13
√

1− 2m
r )r

16r5(1− 2m
r )2

+
2m(13− 3

√
1− 2m

r )r2

16r5(1− 2m
r )2

+

(
l2

r2 + hc2
)m(12m2 + m(−14 +

√
1− 2m

r )r

8r5(1− 2m
r )

−
(5 +

√
1− 2m

r ))r2

8r5(1− 2m
r )

+O(Θ4), (4.12)

For Θ = 0, we restore the usual commutative effective potential for the Schwarzschild
metric.

Ve f f (r, Θ = 0) =
(

1− 2m
r

)(
l2

r2 + hc2
)
− E2 (4.13)

4.2 time-like geodesic equation in the nc schwarzschild spacetime

In this section, we investigate the effect of non-commutativity in the radial and the circular
motion of a massive test particle in the equatorial plane of NC Schwarzschild spacetime.

4.2.1 Radial motion of massive particles

In order to investigate the radial motion of a massive test particle around the NC
Schwarzschild BH, we must use some conditions on the above effective potential (4.12),
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in which l = 0 and h = 1, c = 1, and that gives us the following equation of radial motion
for a massive test particle in NC spacetime.

(
dr
dτ

)2

= E2 −
(

1− 2m
r

)
−Θ2

E2

64m3 + m2(−49 + 13
√

1− 2m
r )r

16r5(1− 2m
r )2

+
2m(13− 3

√
1− 2m

r )r2)

16r5(1− 2m
r )2

+

m(12m2 + m(−14 +
√

1− 2m
r )r

8r5(1− 2m
r )

+
−(5 +

√
1− 2m

r ))r2

8r5(1− 2m
r )

+O(Θ4). (4.14)

It is clear that for Θ = 0, we recover the usual commutative radial equation of a massive
test particle in Schwarzschild spacetime [8]. Considering now a free fall of massive test
particle in NC Schwarzschild BH, and for the initial condition, the test particle considered
in the rest, i.e., ṙ = 0 and located at r = r0 when τ = 0. In NC spacetime, the proper time
of a massive test particle can be computed using the above equation (4.14) with E = 1.

τ̂ = −
∫ r

r0

2m
r′
−Θ2


m(64m2 + m(−49 + 13

√
1− 2m

r′ )r
′ + 2(13− 3

√
1− 2m

r′ )r
′2)

16r′5(1− 2m
r′ )

2


+

m(12m2 + m(−14 +
√

1− 2m
r′ )r

′ − (5 +
√

1− 2m
r′ ))r

′2

8r′5(1− 2m
r′ )


−1/2

dr′ , (4.15)

At the leading order of Θ, we can obtain

τ̂ =
2
3

√
r3

0
2m

+ Θ2


√

r0

2m

32m2 + 4m(−52 +
√

1− 2m
r0
)r0 + 131r2

0

128(2m− r0)r2
0


+

1
8m

ArcSin

(√
2m
r0

)
+

67
256m

ArcTanh
(√

r0

2m

)}
− (r0 → r). (4.16)

The usual commutative expression can be recovered when Θ = 0 [176].
In Fig. 4.1, we show the proper time τ̂ behavior for a free fall of a massive test particle

into NC Schwarzschild BH. As we observe, the non-commutativity effect on the proper
time is located near the event horizon, in which the proper time near the event horizon is
increasing with the increases of Θ. In this geometry, the massive test particles take more
time to reach the NC event horizon compared to the commutative case and an infinite
time to reach the singularity, contrary to the commutative behavior [8], and this effect
disappears when we move away from the event horizon.
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Figure 4.1: The behavior of the proper time for a free fall of a massive test particle in the NC
Schwarzschild black hole as a function of r, with m = 1 and the initial position r0 = 8.

Now if we use the relations (4.4a) and (4.14) with setting E = 1, we can write the
coordinate time for a free fall in the NC Schwarzschild BH as follows:

t̂ = −
∫ r

r0

(ĝtt)
−1

2m
r′
−


64m3 + m2(−49 + 13

√
1− 2m

r′ )r
′ + 2m(13− 3

√
1− 2m

r′ )r
′2

16r′5(1− 2m
r′ )

2


+

m(12m2 + m(−14 +
√

1− 2m
r′ )r

′ − (5 +
√

1− 2m
r′ ))r

′2

8r′5(1− 2m
r′ )

Θ2

−1/2

dr′ , (4.17)

At the leading order in Θ, the above integral gives us

t̂ =
2
3

√
r3

0
2m

+ 4m
√

r0

2m
− 4mArcTanh

(√
r0

2m

)
+ Θ2

{√
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(
− 25

16r0

− 37m
128(r0 − 2m)2 +

15
√

1− 2m
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32(r0 − 2m)2 −
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√
1− 2m

r0

4(r0 − 2m)2 −
61

512(r0 − 2m)


+

1
4m

ArcSin

(√
2m
r0

)
+

605
1024m

ArcTanh
(√

r0

2m

)}
− (r0 → r). (4.18)

The usual commutative expression is recover when Θ = 0 [176].
The coordinate time t̂ behavior for a free fall of a massive test particle in the NC Schwarz-

schild BH is shown in Fig. 4.2. As we see, the non-commutativity effect on the coordinate
time is located near the NC event horizon, in which this geometry increases the time co-
ordinate of a massive test particle, and that is a similar behavior to the commutative one
[8].
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Figure 4.2: The behavior of the time coordinate for a free fall of a massive test particle in the NC
Schwarzschild black hole as a function of r, with m = 1 and the initial position r0 = 8.

The variation of the proper time τ̂ and the coordinate time t̂ of a massive particle falling
toward the NC Schwarzschild BH is shown in Fig. 4.3. The massive particles located at
r0 falling toward the NC Schwarzschild black hole take an infinite time with both their
own proper time and in the coordinate time to reach the NC singularity and the NC
event horizon, respectively, which is contrary to the commutative case for the proper time
[8]. In this case, the non-commutativity prevents the massive particles from reaching the
singularity in a finit time.

4.2.2 Circular motion of massive particles

For studying the orbital motion of a massive test particle around the NC Schwarzschild
BH, we analyze the behavior of the effective potential (4.12) with l 6= 0 and h = 1, c = 1.

The influence of parameters Θ, m, E, and l on the effective potential for a massive test
particle is shown in Figs. 4.4 and 4.5. It is clear that, in these figures, all the extremes of the
NC effective potential are located outside the NC event horizon for any value of the used
parameters. As we can see in the NC geometry, there is a new minimum in the effective
potential behavior, and that allowed us to see it as multiple stable circular orbits for a
massive test particle. From the left panel in Fig. 4.4, we can see that, when Θ increases,
the maximum peak of the curve decreases and shifts a little off the event horizon. We
note that the divergence behavior of the effective potential around the NC event horizon
is a consequence of the NC geometry, which plays the role of a barrier preventing high-
energy particles from falling into the event horizon. In Fig. 4.4 (right panel), the increase
in mass shifts the NC effective potential off the event horizon and increases the depth of
the potential in NC spacetimes.
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Figure 4.3: The behavior of the proper/coordinate time for a free fall of a massive test particle in
the NC Schwarzschild black hole as a function of r, with m = 1 and the initial position
r0 = 8.
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Figure 4.4: The behaviors of the effective potential for a massive particle. Left panel: different Θ
and fixed: E = 0.998, m = 1, and l = 4.2. Right panel: different m and fixed: E = 0.998,
Θ = 0.4, l = 4.2.

As we observe from Fig. 4.5 (left panel), the effective potential depends on the energy
of the test particle in the NC spacetime (4.12), in which the increase in energy leads to a
decrease in the level of the effective potential and an increase in the depth of the potential
well. For low-energy particles, E � 1, the new minimum of the effective potential disap-
pears, and hence such particles fall into the event horizon of the Schwarzschild BH. While
in the right panel (Fig. 4.5), we show the influence of the orbital momentum l on the ef-
fective potential, where we found that, in this geometry, there is always a minimum of the
effective potential near the event horizon, whatever the value of the orbital momentum;
when l increases, the depth of the potential well decreases and shifts towards the event
horizon. The other extremes are restored when lcrt > 2

√
3m.
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In this scenario, non-commutativity plays a similar role as the potential well near the
event horizon, when all matter absorbed by the black hole is compressed into this region
before entering the event horizon. This leads to the formation of a new accretion disk near
this region with high density and high temperature around the NC BH, which becomes
very bright. This is known as "Black Hole Accretion Disk Theory" (see Refs. [213–216]),
which is also known in astronomy as "Quasar" (see Ref. [217, 218]).

The new minimum appearing in the behaviors of the effective potential in Figs. 4.4 and
4.5 can be found in other theories such as the Reissner-Nordström BH [219, 220], or the
non-singular black hole theory [221, 222], etc. While these theories show a problem in
the location of this minimum, which is located inside the event horizon and thus cannot
be interpreted as a stable circular orbit, in our work, the NC geometry shifts the new
minimum outside of the event horizon, thus giving the possibility of a stable circular orbit
near the event horizon. We elaborate on this in the following section.

4.2.3 Stability condition and Lyapunov exponent

In what follows, we investigate the orbital motion and their stability in the NC spacetime
in order to see how the non-commutativity affects this class of orbits. For that, let us now
consider a circular motion (ṙ = 0), and the corresponding effective potential (4.12) must
satisfy the following condition:

Ve f f (r, Θ) = V2(r, Θ)− E2 = 0, (4.19)

and the extreme of the NC effective potential can be obtained by solving the following
equation:

dVe f f

dr
= 0, (4.20)

The solution to the above equation enables us to obtain stable and unstable orbits.
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In NC spacetime, there is always a minimum for the effective potential Ve f f that appears
when l > 0,2 which corresponds to the Newtonian case. However, the other extremum of
Ve f f exists for a specific condition on the angular momentum, l, namely lcrt > 2

√
3m, and

it depends on the value of the NC parameter Θ. This is similar to the relativistic case in
commutative spacetime. It is clear that the use of the gravitational gauge theory in NC
Schwarzschild spacetime using SW map 2.2.3 relates together the Newtonian case and the
relativistic case in commutative Schwarzschild geometry.

Table 4.1: Some numerical values of event horizon rNC
h , unstable circular orbit runs, and multiple

stable circular orbit rsta in the commutative and the NC case with different parameter Θ
and fixed E = 0.998, l = 4.2, m = 1.

Θ 0 0.1 0.15 0.20 0.25 0.30

rNC
h (event horizon) 2 2.00188 2.00422 2.0075 2.01172 2.01688

rsta(internal) - 2.16349 2.21421 2.25862 2.29837 2.33435
runs 3.83278 3.83684 3.8419 3.84894 3.85791 3.86876

rsta(external) 13.8072 13.8074 13.8076 13.8078 13.8081 13.8086

The influence of the NC parameter Θ on the event horizon unstable and the multiple
stable circular orbits, obtained by the numerical solution to the Eq. (4.20), are shown in
Table 4.1. As we see, all types of circular orbits increase with increasing Θ. This behavior
can be found in Fig. 4.6.
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Figure 4.6: The behaviors of the radius of circular orbits for a particle in the NC space-time. Unsta-
ble and multiple stable circular orbits as function of Θ and for fixed l = 4.2, E = 0.998,
m = 1 in (a), (b), and (c), and as function of l and for fixed Θ = 0.2, E = 0.998, m = 1 in
(d), (e), and (f).

As we see in Fig. 4.6, all the types of radius in (a), (b), and (c) increase as the NC
parameter, Θ, increases. Therefore, in NC spacetime, the unstable circular orbital has a
greater radius and is increasing as the NC parameter increases, indicating a strong grav-
itational field. We can also observe that the unstable and internal stable circular orbits

2 When l = 0, in this case, the NC parameter plays the role of angular momentum.
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decrease when the angular momentum, l, increases, while the external stable circular orbit
increases, as shown in (d), (e), and (f).

In astrophysics, studying the motion of test particles around compact objects is due to
investigating a specific type of a circular orbit called the innermost stable circular orbit
(ISCO), which has great importance in this field and gives us a better understanding of
the nature of massive compact objects such as neutron stars, quasars, supermassive black
holes, etc. This class of orbits can be obtained from the stability condition given by:

d2Ve f f

dr2 > 0 (4.21)

The numerical solution of the above condition in the usual commutative case shows that
one ISCO at rC

ISCO > 6 in Schwarzschild spacetime with lcrit, while in NC spacetime we
get two stable circular orbits (SCO) stability orbits (see Fig.4.7), at rh � rNC

ISCO 6 2.46729
and rNC

ISCO > 6.00772, using SW map withe parameter Θ = 0.2, which can see as a multiple
SCO separated by unstable region.
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Figure 4.7: The condition of stability for circular orbits for different Θ and other fixed parameters:
(left panel) E = 1, lcrit = 2

√
3, and m = 1. (right panel) E = 1, lcrit =

√
3, m = 0.5.

The behavior of the composite conditions equations given in (4.20) and (4.21) is shown
in Fig. 4.7, for fixed E and for different values for the parameters lcrit, m, and Θ. It is clear
that, in the commutative space, Θ = 0, we have just one condition for the ISCO, while
the NC spacetime increases this orbit and predicts a new class of SCO near the event
horizon of the NC Schwarzschild BH. Another note that can be seen from the figure is that
when the mass of the black hole decreases, the NC effect increases, suggesting that the NC
correction term is proportional to (∝ 1

m ).
The stability condition behavior of circular orbits is shown in Fig. 4.8, as a function of

the mass, m, in the left panel and as a function of the NC parameter, Θ, in the right panel.
It is clear that, in the NC spacetime, the effect of the mass (left panel) is similar to the
effect of the NC parameter (right panel), in which the increase in one of them leads to an
increase in the stability conditions of the two radii. From this behavior in Fig. 4.8 and the
interesting result in Ref. [149, 150], the Ricci scalar for the Schwarzschild black hole in the
NC spacetime has a non-zero value for Θ 6= 0. Where we see that the NC parameter Θ
plays the same role as the mass m, maybe that can be used to explain the dark matter in
this universe.
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Table 4.2: Some numerical solution for the radius condition of the innermost stable circular orbit
with different parameters Θ and fixed E = 1, lcrit = 2

√
3m, m. (a) m = 1, (b) m = 0.5,

(c) m = 3/14.

Θ 0 0.10 0.15 0.20 0.25 0.30

r(a)min > 6 6.00127 6.00286 6.00507 6.00792 6.01138

rs � r(a)min 6 2.39118 2.48542 2.5655 2.63613 2.69974

r(b)min > 3 3.00254 3.00569 3.01008 3.01566 3.02241

rs � r(b)min 6 1.28275 1.34987 1.40569 1.45373 1.49587

r(c)min > 1.28571 1.29157 1.29869 1.3083 1.32011 1.33377

rs � r(b)min 6 0.616476 0.657125 0.688445 0.713273 0.733258

In table 4.2, we present some numerical solutions obtained according to the conditions
given by Eqs. (4.20) and (4.21). The results in the above table represent the results obtained
in Fig. 4.7 and 4.8 (right panel), which represent the effect of Θ in the ISCO radius, where
this radius increases with increasing Θ. It is worth noting that the non-commutativity pre-
dicts a new class of SCO near the event horizon, which is absent in the usual commutative
spacetime.

From the two tables 4.1 and 4.2, we can conclude that the NC space increases the radius
of the SCO and allows for the possibility of multiple SCO separated by an unstable region.

For circular orbits, we can compute the energy and the angular momentum of massive
particles by using the two stability conditions (4.19) and (4.20).

E2
c '

(−2m + rc)2

rc(rc − 3m)
−

 B(rc) + F(rc)
√

1− 2m
rc

32(r4
c (−3m + rc)2

√
1− 2m

rc
)

Θ2 +O(Θ4), (4.22)

l2
c '

mr2
c

rc − 3m
−

 S(rc) + Q(rc)
√

1− 2m
rc

32(rc(−3m + rc)2(rc − 2m)
√

1− 2m
rc
)

Θ2 +O(Θ4). (4.23)
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First class of SCO

NC Schwarzschild event horizon
Unstable region

Figure 4.9: Schematic picture of the first and second bounds of stable circular orbits around the
NC Schwarzschild BH, where green solid line represents ISCO for the Schwarzschild
BH, black dot-dashed lines represent ISCO in external region for the NC Schwarzschild
BH, blue dashed line represents the NC event horizon, and the black disk in the center
represents the singularity of the NC Schwarzschild BH, and the red dot lines represent
the new region of SCO near the NC event horizon. (E = 1, l = 2

√
3, m = 1, and Θ = 0.6).

where:

B(rc) = −120m4 + 162m3rc − 71m2r2
c + 4mr3

c , F(rc) = 204m4 − 174m3rc + 41m2r2
c − 4mr3

c ,
(4.24a)

S(rc) = −48m4 + 126m3rc − 55m2r2, Q(rc) = −120m4 + 174m3rc − 75m2r2
c + 8mr3

c .
(4.24b)

The usual expressions for energy and angular momentum of the commutative Schwarz-
schild BH are recovered when Θ = 0 [176].
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Figure 4.10: The behavior of energy (left panel) and angular momentum (right panel) of a circular
orbit for massive particles in NC spacetime.

The variations of the energy E2
c (left panel) and angular momentum l2

c (right panel) of
a circular orbit for massive particles around NC Schwarzschild BH as a function of rc
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are shown in Fig. 4.10. It is clear that in the NC spacetime, the energy E2
c of the massive

test particle for circular orbit shows a new behavior in the unphysical region (E2
c < 0)

compared to the commutative case (see the left panel), in which the energy turned to
positive values (E2

c > 0) near the event horizon, where that is explained by the new SCO
at this region. The effect of non-commutativity on the angular momentum is shown in the
right panel, where a new behavior emerges from this geometry and is similar to the energy
behavior (see left panel). The angular momentum also has positive values near the event
horizon, which corresponds to the new stable circular orbit (see Table. 4.1), and that is not
allowed in the commutative case Θ = 0, in which the region near the event horizon is an
unphysical region for both energy and angular momentum.

4.2.3.1 Time period and orbital velocity

For a massive test particle in circular orbit around a NC Schwarzschild BH, its orbital
velocity can be defined as follows: [36, 223]

Ω̂c =
φ̇

ṫ
, (4.25)

Using Eq. (4.4b) together with (4.22) and (4.23), we obtain the orbital velocity at the second
order in the NC parameter Θ as follows:

Ω̂c =

√√√√√m
r3

c
+

X(rc) + W(rc)
√

1− 2m
rc

32r6
c (rc − 2m)3

Θ2, (4.26)

where

X(rc) = −1272m5 + 2304m4rc − 1544m3r2
c + 451m2r3

c − 48mr4
c , (4.27a)

W(rc) = −192m4r + 298m3r2
c − 137m2r3

c + 24mr4
c . (4.27b)

The commutative case [36] recovers when Θ = 0.
Lets now consider a massive particle orbiting around a deformed BH. The orbital time

or necessary time for a period is defined by [36].

T̂Ω̂ =
2π

Ω̂c
, (4.28)

The orbital velocity (left panel) behavior together with the orbital time scale of coor-
dinate time (right panel) in the NC spacetime as a function of rc are shown in Fig. 4.11.
As we see, in NC spacetime, both orbital velocity (left panel) and orbital time scale (right
panel) show a new behavior that appears only near the event horizon rNC

h (in the outside
region), and this geometry increases the orbital velocity near the event horizon, and this
effect becomes negligible for large orbits. Also for the orbital time scale, the effect of non-
commutativity is limited only near the event horizon, in which in this geometry the time
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Figure 4.11: The behavior of the orbital velocity (left panel) and orbital time scale (right panel) for
a massive test particle with different values of NC parameters Θ.

period is smaller compared to the commutative case (right panel), and as we see, the non-
commutativity decreases the orbital time scale until it reaches zero at the singularity of the
NC Schwarzschild BH, while at the large orbits rc � 3, this effect vanishes.

4.2.3.2 Lyapunov exponents

In order to describe the NC spacetime proprieties around the NC Schwarzschild BH, it
is interesting to study the classification of both stable and unstable circular orbits. In this
context, the Lyapunov exponent [33] has a huge application in GR, where it is considered
a bridge between the non-linear dynamics and the non-linear GR. Moreover, the Lyapunov
exponent λ̂ measures the average rate of separation between two nearby geodesics in
phase space, and their stability can be determined by checking the nature of λ̂, in which
the circular orbit is stable and marginal stable when λ̂p (or λ̂c) are imaginary and zero,
respectively, and is unstable for λ̂p (or λ̂c) real [40, 43]. In the NC spacetime, the proper
time Lyapunov exponents λ̂p and coordinate time Lyapunov exponents λ̂c can be written
respectively as follow [36, 40, 42, 43]

λ̂p = ±

√
−Ve f f (r, Θ)′′

2
, λ̂c = ±

√
−Ve f f (r, Θ)′′

2ṫ2 . (4.29)

Using the NC effective potential (4.12) for a massive particle together with (4.4a), (4.22)
and (4.23), we find

λ̂p =

√√√√√−m(rc − 6m)

(rc − 3m)r3
c
+

 Z(rc) + P(rc)
√

1− 2m
rc

32(rc − 2m)3r6
c (rc − 3m)2

Θ2 , (4.30a)

λ̂c =

√√√√√−−m(rc − 6m)

r4
c

+

Y(rc) + N(rc)
√

1− 2m
rc

32(rc − 2m)3r7
c

Θ2 . (4.30b)
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where

Z(rc) = 16416m7 − 38544m6rc + 34992m5r2
c − 16116m4r3

c + 4076m3r4
c − 551m2r5

c

+ 32mr6
c , (4.31a)

P(rc) = 3564m6rc − 8058m5r2
c + 7070m4r3

c − 2910m3r4
c + 517m2r5

c − 24mr6
c , (4.31b)

Y(rc) = 8880m6 − 16568m5rc + 11200m4r2
c − 3470m3r3

c + 515m2r4
c − 32mr5

c , (4.31c)

N(rc) = 1668m5rc − 2870m4r2
c + 1808m3r3

c − 473m2r4
c + 24mr5

c , (4.31d)

The commutative expressions of λ̂p and λ̂c are recovered when Θ = 0 [40, 42].
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Figure 4.12: The behavior of the proper time (left panel) and coordinate time (right panel) Lyapunov
exponents for a massive particle as a function of circular orbits rc.

Fig. 4.12 shows the instability of orbits measured by Lyapunov exponents, which is
described by the behavior of the proper (left panel) and coordinate time (right panel) for
a massive particle in the NC Schwarzschild spacetime. As we see now, a new behavior
appears in the NC spacetime a for both λ̂p (left panel) and λ̂c (right panel). It is clear
that, in the right panel, we show the instability of the orbits in the region between the
singularity and the NC ISCO, 2m < rc ≤ rISCO

outer , which is measured by the coordinate time
Lyapunov exponents in the NC space time, where that means λ̂c is real in this region, and
the non-commutativity increases the instability of the orbits near the event horizon and
decreases when we are far from the event horizon rc > rNC

h , until reaching zero at the
outer ISCO rISCO

outer . While, in the left panel, we show a different behavior to the coordinate
time (see right panel), in which the proper time Lyapunov exponents in the NC spacetime
measured the instability of circular orbits in two regions separated by an imaginary part
of λ̂p, where λ̂p is real in two regions 2m < rc ≤ rISCO

inner and runs
c < rc ≤ rISCO

outer , which means
that the circular orbit is unstable and is separated by a stable region with λ̂p imaginary in
rISCO

inner ≤ rc ≤ runs
c , and this result coincides with the one obtained in the Table. 4.1 and 4.2,

where the new circular orbit near the event horizon is stable.
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The ratio proper/coordinate time of the Lyapunov exponent can be computed using
(4.30a) and (4.30b), which can be written as follows:

λ̂p

λ̂c
=

√√√√√ rc

(rc − 3m)
+

Y(rc)(3m− rc)− Z(rc) + (N(rc)(3m− rc)− P(rc))
√

1− 2m
rc

32m(rc − 2m)3(rc − 3m)2(rc − 6m)r2
c

Θ2,

(4.32)
The commutative expression can be recovered when Θ = 0 [40, 42].
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Figure 4.13: The behavior of the ratio proper/coordinate time of Lyapunov exponent for a massive
particle in NC spacetime.

In Fig. 4.13, we show the behavior of the ratio proper time to the coordinate time of
the Lyapunov exponent as a function of the circular orbits rc in the NC spacetime. It is
clear that the ratio λ̂p/λ̂c is real in two regions and separated by an imaginary one, which
means the unstable regions are separated by a stable one (see Fig. 4.9), and that is similar
to the case of the proper time Lyapunov exponent.

4.2.4 NC effect on the orbital motion

As we see above, the non-commutativity affects the stability of circular orbits around NC
Schwarzschild BH, so the investigation of the geodesic equation is important for more
detailed analysis on the effect of this geometry. In which follow, we need to write the
equation of motion (4.11) as a function of φ. To achieve this, we use the angular momentum
condition Eq. (4.4b), and then we obtain

dr
dτ

=
dr
dφ

dφ

dτ
=

l
ĝφφ(r, Θ)

dr
dφ

(4.33)
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We substitute this into Eq. (4.11), and we obtain:

(
dr
dφ

)2

= −
ĝ2

φφ(r, Θ)

l2 Ve f f (r, Θ) (4.34)

where we use the relations (4.11), (4.12), and (4.2d) in the case of a massive particle, h = m2
0,

then we obtain:

(
dr
dφ

)2
=

r4

l2 E2 − r4

l2

(
1− 2m

r

)(
l2

r2 + hc2
)
−Θ2

−
5

8
− 3

8

√
1− 2m

r
+

m
16r

−17 +
5√

1− 2m
r


+

m2
√

1− 2m
r

(−2m + r)2

(1− 2m
r

)
+

E2

l2

 (m2(−49 + 13
√

1− 2m
r )r + 2m(13− 3

√
1− 2m

r )r2)

16r5(1− 2m
r )2

+
64m3

16r5(1− 2m
r )2

)
−
(

l2

r2 + hc2
)m(12m2 + m(−14 +

√
1− 2m

r )r− (5 +
√

1− 2m
r ))r2

8r5(1− 2m
r )


+

1
l2

5
8
− 3

8

√
1− 2m

r
+

m
16r

−17 +
5√

1− 2m
r

+
m2
√

1− 2m
r

(−2m + r)2

((1− 2m
r

)(
l2

r2 + hc2
)

−E2
)}

+O(Θ4), (4.35)

We define a new variable, u = 1
r ; thus, we find

(
du
dφ

)2

=
(E2 −m2

0c2)

l2 +
2mm2

0c2

l2 u− u2 + 2mu3 −Θ2
{
−u4(1− 2mu)

(
5
8
− 3

8

√
1− 2mu

+
1
16

mu
(
−17 +

5√
1− 2mu

)
+

m2u2

(1− 2mu)
3
2

)
− 2u2

l2

(
(−1 + 2mu)(m2

0c2 + l2u2)

+E2)×(5
8
− 3

8

√
1− 2mu +

1
16

mu
(
−17 +

5√
1− 2mu

)
+

m2u2

(1− 2mu)
3
2

)

+

(
E2mu3(64u2m2 + mu(−49 + 13

√
1− 2mu) + 2(13− 3

√
1− 2mu))

16l2(1− 2mu)2

)

+
mu3(m2

0c2 + l2u2)(12u2m2 + mu(−14 +
√

1− 2mu)− (5 +
√

1− 2mu))
8l2(1− 2mu)

}
+O(Θ4), (4.36)

Let’s now rewrite the above equation in linear form using the following approximation
mu� 1, and we stop at 3rd order in u, and hence we find:(

du
dφ

)2

=
(E2 −m2

0c2)

l2 +
2mm2

0c2

l2 u− u2 + 2mu3 +
Θ2

2l2

{
(E2 −m2

0c2)u2

+m(5m2
0c2 − 4E2)u3} , (4.37)
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The derivative of the above equation with respect to φ gives us

d2u
dφ2 + u =

mm2
0c2

l2 + 3mu2 +
Θ2

2l2

{
(E2 −m2

0c2)u +
3m
2
(5m2

0c2 − 4E2)u2
}

. (4.38)

where this equation is the NC geodesic equation in NC Schwarzschild spacetime.
The analytical solution to this equation can be obtained using the approximation method.

For that, let’s rewrite the equation (4.38) in this form:

d2u
dφ2 + ω2u =

mm2
0c2

l2 + 3m′u2, (4.39)

where

ω2 = 1− 2Θ2

4l2 (E2 −m2
0c2), (4.40a)

m′ = m
[

1 + Θ2
(

5m2
0c2 − 4E2

4l2

)]
. (4.40b)

This equation can be solved using the same method in Sec. 1.2, where we use the ap-
proximation solution [224].

u(φ) =
mm2

0
l2ω2

(
1 + ecos

(
ωφ− 3m′mm2

0
l2ω3 φ

))
. (4.41)

where e is the eccentricity of the orbit. Note that when Θ = 0, the commutative solution is
recover (1.24) (for the case m0 = 1).

The plot of some orbits of a massive particle around a NC Schwarzschild black hole
described by the geodesic equation (4.41) are shown in Fig. 4.14 for different values of l
and E and with a fixed black hole mass m = 3/14 and the NC parameter Θ = 0.1, 0.2, 0.3
(left to the right) compared with the commutative case Θ = 0. It is clear that in rows
1, 2, 3, and 4, the non-commutativity of the spacetime affected the orbits of the massive
test particle, and this appears in the deformation on the periastron advance of the particle
orbit.

4.3 null geodesic equation in the nc schwarzschild spacetime

This section is for studying the effect of non-commutativity in the radial and the circular
motion of a massless test particle in the equatorial plane of NC Schwarzschild spacetime.
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Figure 4.14: Time-like geodesic for a massive test particle h = 1 around a NC Schwarzschild black
hole, with Θ = 0.1, 0.2, 0.3, 0.4 (left to right) and fixed mass m = 3

14 and varying other
parameters in the plan θ = π

2 : (rows 1), l = 1.586, E = 0.993; (rows 2), l = 0.915,
E = 0.975; (rows 3) l = 0.99, E = 0.9828; (rows 4) l = 0.915, E = 0.975.

4.3.1 Radial motion of massless particles

The radial motion for a massless particle in the NC Schwarzschild spacetime can be studied
using the NC effective potential (4.12) with l = 0 and h = 0, and it is written as follows:

(
dr
dτ

)2
= E2 −Θ2

E2

64m3 + m2(−49 + 13
√

1− 2m
r )r + 2m(13− 3

√
1− 2m

r )r2

16r5(1− 2m
r )2

+O(Θ4).

(4.42)
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In the case of Θ = 0, the commutative expression is recovered. Let’s now consider a photon
emitted from the point r = r0 in free fall into the NC Schwarzschild BH with E = 1. The
affine parameter τ and coordinate time t̂ in this case are defined by

τ̂ = −
∫ r

r0

1−Θ2

64m3 + m2(−49 + 13
√

1− 2m
r )r + 2m(13− 3

√
1− 2m

r )r2

16r5(1− 2m
r )2


−1/2

, (4.43a)

t̂ = −
∫ r

r0

(ĝ00)
−1

1−Θ2

64m3 + m2(−49 + 13
√

1− 2m
r )r + 2m(13− 3

√
1− 2m

r )r2

16r5(1− 2m
r )2


−1/2

.

(4.43b)

The integration of both above equations is evaluated at the leading order in Θ, which gives

τ̂ = r0 + Θ2

{
25Log

(
r0

(r0 − 2m)

)
− 1

128m

(
32m2 + 15mr0 + 8r2

0

r2
0

+

(
1− 2m

r0

)−1/2

−
(

1− 2m
r0

)1/2
)
− 13

3

(
1− 2m

r0

)3/2

− 35
2

(
r0

(r0 − 2m)

)}
− (r0 → r), (4.44a)

t̂ = r0 + 2mLog
( r0

2m
− 1
)
−Θ2

{
224m2 − 201mr0 + 63r2

0
128r0(r0 − 2m)2 +

63
m

Log
(

r0

(r0 − 2m)

)

+
(17m2 − 24mr0 + 8r2

0)
√

1− 2m
r0

m(r0 − 2m)2

− (r0 → r). (4.44b)

When Θ = 0, the commutative expression of both the affine parameter and the coordinate
time of a massless particle are recovered [8].
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Figure 4.15: The behavior of the affine parameter and the coordinate time along the radial null
geodesic of a photon in the NC Schwarzschild black hole as function of r.
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In Fig. 4.15, we show the behavior of both the affine parameter τ̂ and the coordinate
time t̂ along a radial null geodesic. For the free fall of a photon from r = r0 falling into the
NC Schwarzschild BH, it is seen that the photons take an infinite affine parameter to reach
the singularity, contrary to the commutative case [8, 225], in the case of the NC spacetime
in the affine parameter framework, and it’s the same case for the time coordinate, which
takes an infinite time to reach the NC event horizon, which is the same behavior as in the
commutative case for the time coordinate [8]. It is worth noting that the non-commutativity
prevents the photons from reaching the singularity only after an infinite proper time τ, and
that means the photons cannot reach the singularity for a finite time, which is the same
observation as the massive test particle in the above Sec. 4.2.

4.3.2 Circular motion of massless particles

In which follows, we focus on the null circular motion of a photon in the equatorial plane
around the NC Schwarzschild BH. The NC effective potential in this case is given by (4.12)
with h = 0.
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Figure 4.16: The behavior of the effective potential for massless particle with different values of
NC parameters Θ and fixed: E = 0.998, m = 1, l = 4.2 (left panel), and with different
angular momentum l and fixed E = 0.998, m = 1, Θ = 0.2 (right panel).

The variation of the NC effective potential for a massless particle (photon) as a function
of rc is shown in Fig. 4.16, for different values of the NC parameters Θ (left panel) and for
the angular momentum l (right panel). It is clear that, in the NC spacetime, the effective
potential shows a new minimum appears near the event horizon in a similar way as for
the massive test particle case (see Sec. 4.2), while for the photons, there are only two
extrema located outside the event horizon, which are a minimum and a maximum, and
that allows us to interpret this new minimum as a new SCO, which means a new stable
photon sphere near the event horizon in this geometry. It is clear that, when Θ is increasing,
the new minimum of the effective potential shifts away from the event horizon, and this
effect becomes insignificant as we move further from the event horizon (r � rNC

h ). In the
right panel, we show that in the NC spacetime, we have a condition in angular momentum
l in which the effective potential has an extremum, contrary to the commutative case where
the effective potential has a maximum, whatever the value of l, while in this geometry Θ =
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0.2 this potential has always two extremums for the critical value of angular momentum
lcrit ≥ 2.55, where this value depends on Θ. Finally, in the NC Schwarzschild spacetime,
there is always a two-photon sphere, in which the inner one is stable while the outer is the
usual unstable photon sphere.

4.3.3 Stability condition and photon sphere

In the case of a massless particle, the circular orbit subjects to the same conditions as the
massive one (4.19) and (4.20), where we use the NC effective potential (4.12) with h = 0,
and that leads to the ratio between the energy Ec and the angular momentum lc for the
circular orbit by the following expression:

1
Dc

=
Ec

lc
=

√√√√√ rc − 2m
r3

c
+

 J(rc) + G(rc)
√

1− 2m
rc

16r6
c (rc − 2m)

Θ2. (4.45)

where Dc is the impact parameter, and

J(rc) = 156m3 − 185m2rc + 73mr2
c − 10r3

c , G(rc) = 33m2rc − 37mr2
c + 6r3

c . (4.46)

Table 4.3: Some numerical values of unstable runs and new stable circular orbit rsta of photon sphere
in the NC spacetime with different parameter Θ and fixed E = 0.998, l = 4.2, m = 1.

Θ 0 0.10 0.15 0.20 0.25 0.30

rsta(new) 2.18400 2.24624 2.30383 2.35865 2.41183
runs 3. 2.99782 2.99504 2.99101 2.98559 2.97855

The numerical solution of equation (4.20) is presented in Table. 4.3, which represents the
variation of stable and unstable circular orbits of the photon sphere as a function of some
values of Θ, and when Θ increases, these two types of orbits get closer to each other for
3.29 ≤ l ≤ 4.48 (the condition on l depends on 0 ≤ Θ ≤ 0.3), in which the stable circular
orbit is increasing and these two orbits get closer to each other for 3.29 ≤ l ≤ 4.48 (the
condition on l depends on 0 ≤ Θ ≤ 0.3), which mean the stable circular orbit increasing
and the unstable one decreasing, while for the case of l > 4.48, these two orbits increase
both of them with increasing Θ.

It is clear that, in Fig. 4.17 (two left panels), the new null SCO increases while the un-
stable one decreases as the NC parameter Θ increases. Therefore, the unstable orbit of the
photon has a smaller radius in NC spacetime and decreases as the NC parameter increases
for the case l < 4.48, while for l ≥ 4.48 this orbit is greater than in the commutative case,
where in the commutative case this orbit is independent of the angular momentum l, and
that is due to the presence of the non-commutativity effect that modified the gravitational
field. For the two right panels in Fig. 4.17, the circular orbit of the photon depends on the
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Figure 4.17: The behavior of the photon sphere radius in NC spacetime. stable and unstable circular
orbits as a function of Θ and for fixed l = 4.2, E = 1, m = 1 (two left panels), as a
function of l and for fixed Θ = 0.3, E = 1, m = 1 (two right panels).

angular momentum l in this geometry, in which the new stable circular orbit decreases as
the angular momentum l increases, while the unstable one increases.

NC SBH
Singularity

NC event horizon

Stable photon sphere

Unstable photon sphere

Figure 4.18: The schematic picture of the stable/unstable photon sphere around the NC Schwarz-
schild black hole.

4.3.4 Lyapunov exponents

In which follow we use only the coordinate time Lyapunov exponent, and that because the
photon doesn’t have a proper time.

In this case, for a null circular orbit, the NC angular frequency and the NC time period
in coordinate time are given by the following equations: (4.25) and (4.28), respectively.

Ω̂Null
c =

1
Dc

, T̂Null
Ω̂ = 2πDc (4.47)

The coordinate time Lyapunov exponent for the null circular orbit of a photon around
NC Schwarzschild BH can be obtained using (4.29), which gives us

λ̂Null
c =

√√√√√−3((−4m + rc)(−2m + rc))

r4
c

+

O(rc) + I(rc)
√

1− 2m
rc

32(rc − 2m)2r7
c

Θ2. (4.48)
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where

O(rc) = −19488m5 + 39000m4rc − 29076m3r2
c + 9958m2r3

c − 1716mr4
c + 140r5

c , (4.49a)

I(rc) = −3171m4rc + 5773m3r2
c − 3908m2r3

c + 1080mr4
c − 84r5

c . (4.49b)
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Figure 4.19: The behavior of the coordinate time Lyapunov exponent for massless particles as a
function of rc (left panel) and as a function of the NC parameters Θ (right panel).

The behavior of the Lyapunov exponent λ̂c for photon in the coordinate time is shown
in Fig. 4.19, as a function of rc (left panel) and as a function of the NC parameters Θ (right
panel). It is clear that in the left panel, the instability increases slowly from rc = 4 until it
reaches the maximum, then decreases rapidly as rc decreases until it reaches zero at rc = 2
(near the event horizon), and this maximum decreases and shifts away from the event
horizon as Θ increases. It is worth noting that for the circular orbits near the event horizon
in the NC geometry, their instability is smaller than in the commutative case, while when
we move away from the event horizon, this observation is reflected. Furthermore, in the NC
spacetime the profile of the instability is shifted away from the event horizon, compared
to the commutative case in which the instability became zero at rc = 2, this behavior left
some SCO near the NC event horizon, and that is agree with what we find in the above
discussion (see Table. 4.3) concerning the new stable photon sphere (see Fig. 4.17 and 4.18)
around NC Schwarzschild BH, and the same observation can be found in other theory of
non-commutativity as in Ref. [223], but in this theory the orbit is located inside the NC
event horizon, which can’t seen as new SCO of photons around NC Schwarzschild BH.
In addition, the behavior of λ̂c for some orbits rc as a function of the NC parameter Θ is
shown in the right panel of Fig. 4.19. As we see, in the NC spacetime, the orbit rc = 3
is also unstable, and in this geometry, the instability of this orbit is greater than in the
commutative case. For the other new circular orbit that emerged in the NC spacetime near
the event horizon, there was less instability, and it decreased as Θ increased before going
to zero for specified values of Θ. This indicates that some circular orbits near the event
horizon in NC spacetime are stable.

Also, another quantity that measured the instability of the orbits was the so-called insta-
bility exponent of null circular orbits, where this quantity in NC spacetime is defined by
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the ratio of Lyapunov exponent λ̂Null
c to angular frequency Ω̂Null

c in the coordinate time,
which is given by the following expression:

λ̂Null
c

Ω̂Null
c

=

3(4m− rc)

rc
+

O(rc) + 6J(rc)(8m2 − 6mrc + r2
c ) + 6G(rc)(8m2 − 6mrc + r2

c )
√

1− 2m
rc

32(rc − 2m)3r4
c

+
I(rc)(8m2 − 6mrc + r2

c )
√

1− 2m
rc

32(rc − 2m)3r4
c

Θ2

1/2

. (4.50)

In Fig. 4.20, we show the behavior of the ratio λ̂Null
c /Ω̂Null

c as a function of rc for different
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Figure 4.20: The behavior of λ̂Null
c

Ω̂Null
c

as a function of rc.

NC parameter Θ. It is clear that, in the NC case (for Θ 6= 0), we observe the same behavior
as in Fig. 4.19, while this behavior disappears when Θ = 0 (in the commutative case),
which means the orbits near the event horizon in the NC spacetime are stable, contrary to
the results obtained in Ref. [223].

Finally, we check the behavior critical exponent γ̂ as a final analysis of the null circular
orbit instability around NC Schwarzschild BH, which is defined as a ratio of the Lyapunov
timescale T̂λ̂ = 1

λ̂
to the orbital timescale T̂Ω̂ = 2π

Ω̂
[34–36], in this case we find

γ̂Null =
TNull

λ̂

TNull
Ω̂

=
1

2π

√√√√ 3(4m−rc)
rc

+

(
O(rc)+6J(rc)(8m2−6mrc+r2

c )+(I(rc)+6G(rc)(8m2−6mrc+r2
c ))
√

1− 2m
rc

32(rc−2m)3r4
c

)
Θ2

.

(4.51)
The commutative expression can be obtained when Θ = 0.

Numerical values of the critical exponent γ̂Null for different ranges of the photon orbit
rc with different NC parameter Θ are shown in Table. 4.4. It is clear that γ̂Null in this table
shows both real and imaginary values, in which the real positive values of this quantity for
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Table 4.4: Some numerical values of the critical exponent γ̂Null for unstable runs and new stable
circular orbit rsta of photon sphere in the NC spacetime with different parameter Θ with
m = 1.

Θ rc = 3 rc = 2.4 rc = 2.3 rc = 2.2

0.0 0.159155 // // //
0.1 0.158439 0.117291 0.121293 0.251639

γ̂Null 0.2 0.156349 0.136225 0.328429 0. -0.0662942 i
0.3 0.153042 0.210585 0. -0.10626 i 0. -0.0397438 i
0.4 0.148746 0.-0.216564 i 0. -0.0665877 i 0. -0.0288573 i

the different range of rc correspond to unstable circular orbits [35], while the imaginary
ones correspond to the stable ones. It is worth noting that the photon sphere located
at rc = 3 around the Schwarzschild BH is always unstable in both commutative and NC
spacetime. Moreover, this instability means that the Lyapunov timescale is shorter than the
orbital timescale (T̂λ̂ < T̂Ω̂) [34] (see the definition (4.51)). Also, we show that the values
of λ̂Null decrease when the NC parameter increases for rc = 3, where that means the non-
commutativity increases the instability of this orbit, where the smallest values of λ̂Null

indicate a strong Lyapunov instability [36], which agrees with our discussion for the right
panel in Fig. 4.19, while the imaginary values that correspond to the SCO coincide with
the new minimum of the effective potential for l = 5.2 (closer to the values of Table. 4.3),
where that shows the stability of the new stable photon sphere around NC Schwarzschild
BH and proves the instability of the external photon sphere in both geometry.

4.3.5 Black hole shadow

In which we are interested in studying the black hole shadow for one kind of motion of
photons, which is the circular motion in the equatorial plane θ = π/2, it is easy to show
the relation between the black hole shadow Rshadow and the impact parameter Dc, which
are related by the relation Rshadow = Dc|r=rps , where runs

ps is the radius of the external un-
stable photon sphere (see Fig. 4.18), and it can be obtained by solving (4.20), the analytical
solution to this condition in the leading order on Θ and m, written as follows:

runs
ps = 3m−

(
−38 + 540D2

c m2

288 m

)
Θ2 . (4.52)

It is worth noting that the new stable photon sphere can be obtained only by numerical
solution (see Tab. 4.3), and their shadow can’t be observed because the photon is orbiting
in SCO around the NC Schwarzschild BH. Using this expression, we can express the radius
of the NC Schwarzschild BH shadow.

Rshadow = 3
√

3m

(
1 +

(1 + 2
√

3)
72 m2 Θ2

)
. (4.53)
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When Θ = 0, we obtain the commutative expression.
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Figure 4.21: The Schwarzschild black hole shadow in the NC spacetime, for different values of NC
parameter Θ (left panel) with m = 1, and for different values of black hole mass m
(right panel) with Θ = 0.4.

The influence of the NC parameter (left panel) and the BH mass (right panel) on the ra-
dius of the NC Schwarzschild BH shadow is depicted in Fig. 4.21. It is clear that, in the left
panel, the non-commutativity increases the radius of the NC Schwarzschild BH shadow, in
which this radius increases with increasing Θ, and we can see the same observation in the
right panel for the fixed Θ and increasing in the BH mass m. Moreover, the effect of non-
commutativity on the shadow radius is similar to the effect of black hole mass, where the
NC parameter plays a similar role as a mass, and that’s what we expected in our previous
discussion (see 3 and SubSec. 4.2.3), and that means the non-commutativity increases the
gravitational field. It is worth noting that the same observation on the noncommutativity
effect on the radius of the BH shadow was obtained in [166], in which the authors used
the NC correction to the black hole mass using gauge theory of gravity with negligence of
the deformed metric in the calculation. However, in our case, we use the gauge theory and
the non-diagonal tetrad matrix to calculate the NC Schwarzschild metric, which is used in
our calculation to describe the radius of the NC Schwarzschild BH shadow, and the same
effect is observed in both approaches.
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4.4 non-commutative reissner-nordström spacetime

On the equatorial plane θ = π
2 , around a deformed R-N black hole is described by the line

element (4.1). In this case, the components of the deformed metric ĝµν for a = 0 and b = Θ
are given by

−ĝ00 =

(
1− 2m

r
+

Q2

r2

)
+


2Q2r2

(
−15m

(
−7 +

√
1− 2m

r + Q2

r2

)
− 56Q6 − 284Q2r2m2

)
32r6(Q2 − 2mr + r2)

+

mr3
(

88m2 − 8r2
(
−2 +

√
1− 2m

r + Q2

r2

)
+ mr

(
−77 + 15

√
1− 2m

r + Q2

r2

))
32r6(Q2 − 2mr + r2)

+

12Q2r4
(
−3 +

√
1− 2m

r + Q2

r2

)
32r6(Q2 − 2mr + r2)

Θ2 +O(Θ4) (4.54a)

ĝ11 =

(
1− 2m

r
+

Q2

r2

)−1

+


(Q2 −mr)2

(
8Q2 − r

(
16m + r

(
−17 +

√
1− 2m

r + Q2

r2

)))
32r2(Q2 − 2mr + r2)2

+

r
(
−m2r− 3Q2r + 2m

(
Q2 + r2)) (−4Q2 + r

(
8m + r

(
5 +

√
1− 2m

r + Q2

r2

)))
32r2(Q2 − 2mr + r2)3

Θ2 +O(Θ4)

(4.54b)

ĝ22 =r2 +


8Q6 + mr3

(
−8m2 + 2mr

(
5− 3

√
1− 2m

r + Q2

r2

)
+ r2

(
−3 + 5

√
1− 2m

r + Q2

r2

))
16r2(Q2 − 2mr + r2)2

+

Q2r2
(

r2
(

7− 5
√

1− 2m
r + Q2

r2

)
+ 3mr

(
−11 + 3

√
1− 2m

r + Q2

r2

))
− 32Q4mr + 36Q2m2r2

16r2(Q2 − 2mr + r2)2

−
Q4r

(
3r
(
−5 +

√
1− 2m

r + Q2

r2

))
16r2(Q2 − 2mr + r2)2

Θ2 +O(Θ4) (4.54c)

ĝ33 =r2 +


Q2r2

(
184m2 + 3r2

(
16− 11

√
1− 2m

r + Q2

r2

)
+ mr

(
−188 + 39

√
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+

r3
(

2r3
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5− 3
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)
− 18m2r
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−6 +

√
1− 2m

r + Q2

r2

)
+ 29mr2

√
1− 2m

r + Q2

r2

)
16r2(Q2 − 2mr + r2)2

+

Q4r
(
−135m + r

(
68− 11

√
1− 2m

r + Q2

r2

))
+ 30Q6 − 68m3r3 − 57mr2

16r2(Q2 − 2mr + r2)2

Θ2 +O(Θ4)

(4.54d)
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This deformed metric is used as background for the study of geodesic in the equatorial
plan around the RN BH in the next sections.

For a Lagrangian of a massive neutral particle moving the NC RN spacetime, it can be
written as for the Schwarzschild case (4.3), where use the above deformed metric of RN
spacetime. Since the same Lagrangian is independent of t and φ, we have the same two
conserved quantities, (1.14) and (1.15), where we use the components ĝ00 and ĝ33 given by
(4.54a) and (4.54d), respectively. The NC effective potential of massive neutral particle in
NC RN spacetime can be obtained following the same steps in previous section Sec. 4.2,
and it can be obtained by substituting the components (4.54a), (4.54b), and (4.54d) into the
equation (4.10), then we get

Ve f f (r, Θ) =

(
1− 2m

r
+

Q2

r2

)(
l2

r2 + h
)
− E2 + Θ2

E2
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77− 13
√

1− 2m
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)
16r4(Q2 +−2mr + r2)2

+
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√
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)
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√
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r + Q2

r2

)
+ 64m3r3 − 48Q6
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+

192mQ4r− 224m2Q2r2 −m2r4
(
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)
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+O(Θ4) (4.55)

When Θ→ 0, we recover the commutative effective potential [8].

Ve f f (r, Θ = 0) =
(

1− 2m
r

+
Q2

r2

)(
l2

r2 + h
)
− E2 (4.56)

and for the case Q = 0, we obtain the previous NC effective potential in the Schwarzschild
spacetime (4.12).
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4.5 time-like geodesic motion of neutral particle around a nc rn black

hole

In which follow, we investigate the effect of this geometry on the circular motion for
the case of a uncharged/charged massive test particle around the NC RN BH, where
we present a detailed analysis of this kind of motion.

4.5.1 Circular orbit and stability condition

The orbital motion of a neutral massive test particle around the NC RN BH is studied by
analyzing the behavior of the NC effective potential (4.55) with l 6= 0 and h = 1, c = 1. The
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Figure 4.22: The behaviors of the commutative effective potential Θ = 0 for a massive particle as a
function of r. Left panel: different Q and fixed: E = 0.998, m = 1, l = 4.2. Right panel:
different l and fixed: E = 0.998, Q = 0.8, m = 1.

behavior of the commutative effective potential of a neutral massive particle is shown in
Fig. 4.22 for different values of parameters Q (left panel) and l (right panel). As we see in
the left panel, the effective potential in the RN spacetime shows a new minimum, which
means two minimums and one maximum, and that is similar to the NC Schwarzschild
spacetime in Sec. 4.2 (see Fig. 4.4), where these two types of BH predict a new minimum
in the effective potential. Moreover, the effective potential has always a minimum, what-
ever the values of l (right panel) in commutative RN spacetime. Unfortunately, this new
minimum in the commutative RN spacetime is located inside the event horizon (see Ref.
[220]), and that leads to a difficult physical interpretation where we can’t see it as new
orbits. The influence of parameters (Q, Θ, and l) on the NC effective potential of a neutral
massive test particle as a function of r is shown in Figs. 4.23 and 4.24. It is clear that, in NC
RN spacetime, this minimum is shifted outside the event horizon as in the Schwarzschild
case (see Fig. 4.4), so that can be seen as a new SCO near the event horizon in the same
way as the Schwarzschild black hole in Sec. 4.2. Unlike in the commutative charged BH,
where this minimum is always inside the event horizon whatever the values of Q and l,
[211, 212, 219, 220, 226]. As we see, the increase in the NC parameter Θ for the Q constant
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Figure 4.23: The behaviors of the NC effective potential for a massive particle as a function of r,
with different Θ and fixed: E = 0.998, m = 1, l = 4.2.

leads to a decrease in the pick of the maximum and depth of the new minimum, which
are shifted off the event horizon.
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Figure 4.24: The behaviors of the NC effective potential for a massive particle as a function of r.
Left panel: different Q and fixed: E = 0.998, m = 1, l = 4.2, Θ = 0.2. Right panel:
different l and fixed: E = 0.998, m = 1, Q = 0.5, Θ = 0.2.

While, when we increase in the electric charge Q and we take a NC parameter constant
(left panel Fig. 4.24), the maximum of the effective potential increases and the depth of this
new minimum decreases compared to the commutative case. Also in the NC case of RN
spacetime, the effective potential always has a minimum, whatever the value of l, and we
can see that the depth of this minimum is smaller compared to the commutative case (see
right panel Fig. 4.22). Note that, when we increase the angular momentum l, the depth of
the minimum decreases and remains closer to the event horizon in the outside region. In
addition, the NC parameter Θ can be seen to play an inverse role of the electric charge
Q, but there is some similarity between them, and in this geometry, the new minimum is
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now shifted outside the event horizon for the RN black hole and gives us a multiple SCO
separated by an unstable region, and this indicates that the non-commutativity solves the
problem posed in Ref. [220] and leads to a new prediction of stable orbits near the event
horizon. In addition, the RN spacetime is similar to the NC Schwarzschild spacetime for
uncharged particles (see Fig. 4.4 and 4.22).

In order to obtain the circular orbits in this geometry, our effective potential must satisfy
the following conditions, which are given by (4.19) and (4.20).
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Figure 4.25: The behaviors of the radius of circular orbits for a particle in the NC RN spacetime.
Unstable and multiple stable circular orbit as function of Θ and for fixed l = 4.2,
E = 0.998, m = 1, Q = 0.5 in (a), (b) and (c), and as function of Q and for fixed
Θ = 0.3, E = 0.998, l = 4.2, m = 1 in (d), (e) and (f).

It is clear that, from Fig. 4.25, we can see that all types of circular motion (unstable and
multiple stable) around the NC RN BH have the same behaviors as a function of Θ, in
which their increases with Θ increases, while for increasing in the electric charge Q, the
first stable and the unstable circular orbits decrease, and the second SCO increases.

The stability of these orbits and the ISCO for a massive neutral test particle can be
obtained by the condition (4.21), which must be satisfied by the effective potential. The
numerical solution to this condition in the commutative RN spacetime shows that, for
lC
ISCO = 2

√
2.785123 and Q = 0.5, we get rC

ISCO > 5.60664, while in the NC RN spacetime,
for Θ = 0.3 and lNC

ISCO = 2
√

2.78732967 we get two of region of SCO rNC
h � rNC

SCO 6 2.45336
and rNC

SCO > 5.62175 and separated by unstable region 2.45336 < rc < 5.62175, where that
is correspond to a multiple SCO around NC RN BH.

As we can see, non-commutativity predicted a new SCO near the event horizon in the
both NC Schwarzschild spacetime (see Sec. 4.2) and in the NC RN spacetime. A similar
result can be found in Refs. [227, 228].

Let’s now define the expression of the energy E2
c and angular momentum l2

c for this
kind of motion of a neutral massive test particle. These quantities can be obtained using



86 motion in the non-commutative space-time

Second class of SCO

First class of SCO

Unstable region

NC R-N event horizon

Figure 4.26: The first and second bound of stable circular orbits around the NC RN black hole.

the conditions (4.19), (4.20), and (4.21). Their expressions in the leading order in Θ are
written as follows:

E2
c '

(Q2 − 2mrc + r2
c )

2

r2
c (2Q2 − 3mrc + r2

c )
+

 X (rc) + G(rc)
√

1− 2m
rc

+ Q2

rc

32r6
c (2Q2 − 3mrc + r2

c )
2
√

1− 2m
rc

+ Q2

rc

Θ2 +O(Θ4),

(4.57a)

l2
c '

(mr3
c −Q2r2

c )

2Q2 − 3mrc + r2
c
+

 W(rc) + V(rc)
√

1− 2m
rc

+ Q2

r2
c

32r2
cV0(rc)2(Q2 + rc(−2m + rc))

√
1− 2m

rc
+ Q2

r2
c

Θ2 +O(Θ4).

(4.57b)

where the functions X (rc), G(rc),W(rc), V(rc) and V0(rc) are provided in Appendix B.1.
At the limit Θ → 0, we recover the commutative case of a neutral particle in RN space-

time [219, 229], and the Schwarzschild case (see (4.22) and (4.23)) can be recovered when
we set Q = 0.
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Figure 4.27: Radial dependence of the energy E2
c (left panel) and the angular momentum l2

c (right
panel) of a neutral test particle orbiting around an NC RN black hole, for different
values of electric charge Q and for fixed NC parameter Θ.
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Fig. 4.27 shows the behaviors of the energy E2
c (left panel) and the angular momentum

l2
c (right panel) of a circular orbit for a neutral particle around the NC RN BH as a function

of r, with fixed Θ and different values of the electric charge Q. It is clear that, in NC RN
spacetime, we get a new behavior on the energy E2

c and the angular momentum l2
c , as well

as in the case of NC Schwarzschild spacetime, where we have a new region of positive
values of E2

c > 0 and l2
c > 0 near the event horizon compared to the unphysical region

in the commutative case (where E2
c and l2

c are negatives), and that explains the emerge
of the new SCO in this geometry. As we see, the effect of the electric charge Q in the NC
spacetime is significant in the energy and the angular momentum, in which the behavior of
these two quantities is shifted toward the event horizon, and that gives us more condition
on the circular orbits.
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Figure 4.28: Radial dependence of the energy E2
c (left panel) and the angular momentum l2

c (right
panel) of a neutral test particle orbiting around an NC RN black hole, for different
values of NC parameter Θ and for fixed electric charge Q.

The effect of the NC parameter on the behaviors of the energy E2
c (left panel) and the

angular momentum l2
c (right panel) is shown in Fig. 4.28. It is clear that the more we

increase in Θ, the more we get new SCO near the event horizon, where the increase of Θ,
the behaviors of E2

c , and l2
c are shifted away from the event horizon.

4.5.2 NC effect on the orbital motion

In order to obtain a geodesic equation of a neutral massive particle (h = m2
0) in the NC

RN spacetime, we follow the same steps in SubSec. 4.2.4, where we use the radial equation
(4.34) together with the deformed metric component (4.54d) and the effective potential
(4.55). Let’s use the new variable defined by u = 1

r and use the fact that mu � 1 and
Θ � 1 in order to write our equation in linear form. Then we stop at the 3rd order in u
in the NC correction term, and with some algebra, the orbital equation can be written as
follows: (

du
dφ

)2

=
(E2 −m2

0c2)

l2 +
2mm2

0c2

l2 u− u2 − Q2m2
0c2

l2 u2 + 2mu3 −Q2u4

+
Θ2

2l2

{
(E2 −m2

0c2)u2 + m(5m2
0c2 − 4E2)u3} (4.58)
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Derive the above equation with respect to φ; in this case, the NC geodesic equation around
a RN BH for a neutral particle is given by

d2u
dφ2 + ω′2u =

mm2
0c2

l2 + 3m′u2 − 2Q2u3 (4.59)

with

ω′2 = 1 +
Q2m2

0c2

l2 − Θ2

2l2 (E2 −m2
0c2), (4.60a)

m′ = m
[

1 + Θ2
(

5m2
0c2 − 4E2

4l2

)]
. (4.60b)

Not that, when Q = 0, we get the geodesic equation in the NC Schwarzschild spacetime
(4.39), and for Θ = 0, we get the usual equation of massive test particles in the Schwarz-
schild spacetime [8, 179].

The general solution to this equation can be expressed by using the approximation solu-
tion [224].

u(φ) =
mm2

0
l2ω′2

(
1 + e cos

(
ω′φ− 3m′mm2

0
l2ω′3

(
1− Q2

l2

)
φ

))
. (4.61)

In Fig. 4.29, we show the circular orbit motion of a neutral massive test particle in the NC
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Figure 4.29: Time-like geodesic for a massive particle around Schwarzschild black hole Q = 0 and
RN black hole Q = 0.2 with m = 3/14, E = 0.993, l = 3.8, and Θ = 0, 0.4.

RN spacetime, described by the geodesic solution (4.61), with a given m = 3/14, E = 0.993,
l, Q, and Θ (black dashed-line), and compared to the commutative case Θ = 0 (blue solid-
line) and uncharged black hole Q = 0 (left panel). It is clear that the non-commutativity
effect is negligible for a large value of l; in both cases, Schwarzschild BH Q = 0 (left panel)
and RN BH Q = 0.2 (right panel).

Some of the periodic orbits of a neutral massive test particle around the NC RN BH are
shown in Fig. 4.30, where the plots are made with different l, Q, and Θ for a given m, E.

Here we examine the NC effect in the Schwarzschild BH Q = 0 and RN one Q 6= 0
for the periodic orbits. As we see, for a smaller value of l, the non-commutativity affected
the particle motion, whereas the NC geometry affected only the periastron advance of the
particle orbit in both cases of RN/Schwarzschild BH.
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Figure 4.30: Periodic orbits of neutral massive particle around Schwarzschild and Reissner-
Nordeström black hole for fixed mass m = 3/14 and energy E = 0.993 and varying
other parameters l, Q, and Θ.

4.6 time-like geodesic equation of charged particle around a rn black

hole

In which follow we investigate the motion of a charged massive test particle around the
NC RN BH, and its motion can be described by the following Lagrangian

L̂ =
1
2

ĝµν ẋµ ẋν + qÂµ ẋµ =
1
2
(

ĝtt(r, Θ)c2 ṫ2 + ĝrr(r, Θ)ṙ2 + ĝφφ(r, Θ)φ̇2)+ qÂt ṫ (4.62)

where q is the electric charge of the test particle, and Ât is the NC electric potential de-
formed via the SW maps [160], which generated by the NC RN BH (see SubSec. 2.2.3). For
a statically charged BH, the only potential generated by the total electric charge Q is the
Coulomb potential.

Ât = At + A(1)
t + A(2)

t + ..., (4.63)

where At is the commutative Coulomb potential, and A(1)
t and A(2)

t are the first and second
order corrections in Θ obtained by using SW map, as defined in Eqs. (2.25b) and (2.26b),
respectively. For our choice of NC parameter matrix and the Coulomb potential, the NC
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corrections to the deformed potential are zero: A(1)
t = A(2)

t = 0, and that means Ât = At =
Q
r . However, for the non-static BH or another type of potential, we the NC corrections must

be considered in the calculation.
From our Lagrangian (4.62), we get two conserved quantities, which are

ṫ =
E0 − qAt

c2 ĝtt(r, Θ)
, φ̇ =

l
ĝφφ(r, Θ)

(4.64)

Using these conserved quantities together with the invariant quantity ĝµν ẋµ ẋν = −h,
after some algebra, we find

ṙ2 = −
(
E− q

c At
)2

ĝtt(r, Θ)ĝrr(r, Θ)
− 1

ĝrr(r, Θ)

(
l2

ĝφφ(r, Θ)
+ hc2

)
(4.65)

and the deformed effective potential at the second-order in Θ is written as follows:
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Not that for the commutative case Θ = 0, we obtain the ordinary effective potential.

Ve f f (r, Θ = 0) =
(

1− 2m
r

+
Q2

r2

)(
l2

r2 + hc2
)
−
(

E− qQ
c r

)2

(4.67)
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Figure 4.31: The behaviors of the effective potential for charged massive particle as a function of r,
for different electric charges of the test particle q and fixed: E = 0.998, m = 1, l = 4.2.

In Fig. 4.31, we show the behavior of the effective potential as a function of r for different
values of the electric charge q of a test particle, for a positive (left panel) and a negative
charge (right panel). It is clear that, for the positive electric charge q > 0, the pick of the
NC effective potential increases, and that means a repulsive electric interaction, while for
the negative electric ones q < 0, this pick decreases, and that means an attractive electric
interaction.

As we see before, for a classification of the circular orbits, our effective potential (4.66)
must satisfy the same conditions as (4.19) and (4.20), and their stability can be determined
by solving (4.21).
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Figure 4.32: The behaviors of the radius of circular orbits for a particle in the NC RN spacetime.
Unstable and multiple stable circular orbit as a function of q and for fixed l = 4.2,
E = 0.998, m = 1, and Q = 0.5.

The behavior of the circular orbit radius in NC spacetime as a function of the electric
charge of a test particle q is shown in Fig. 4.32. As we see, for a negative value of q < 0,
the new SCO (left panel) is greater than in the positive range and is decreasing when q
increases, and that means the range of SCO is greater for a particle with negative electric
charge, which corresponds to the attractive force exerted by the charged BH on this particle,
while for a particle with positive charge q > 0, this new SCO became smaller than for the
negative q < 0, and that means this particle can be orbiting in stable orbits closer to the
event horizon, and that is due to the presence of the repulsive force. Moreover, the same
behavior exists for the unstable circular orbits (middle panel), in which the range of the
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unstable orbits is greater for the attractive force than for the repulsive one. However, this
behavior is reversed for the external SCO (right panel), in which the radius of SCO for a
negative electric charge q < 0 of the test particle is smaller than the positive case, which
means that for the attractive interaction, this particle can orbit closer to this BH, while for
the repulsive one, this particle orbits in a large SCO.

The expressions of energy and angular momentum for a circular orbit of a charged
massive test particle can be obtained using the same conditions (4.19), (4.20) and (4.21)
with the above NC effective potential (4.66). With some algebra, we find
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√
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c
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√
1− 2m

rc
+ Q2

r2
c

)
V2(rc)

+

 X2(rc) + G2(rc)
√

1− 2m
rc

+ Q2

r2
c

16r3
c (Q2 − 2mrc + r2

c )V(rc)2
√

1− 2m
rc

+ Q2

r2
c

Θ2 +O(Θ4). (4.68b)

where the explicit expressions for the functions G1(rc), G2(rc), X1(rc), X2(rc), V1(rc), and
V2(rc) are provided in Appendix B.2.

For the limit Θ→ 0, we recover the commutative case, and for the neutral particle q = 0,
we get the same above expression as (4.57a) and (4.57b).
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Figure 4.33: Radial dependence of the angular momentum l2
c of a charged test particle orbiting

around an NC RN black hole for different values of electric charge of test particle q
(left panel) and for different values of NC parameter Θ (right panel).

In Fig. 4.33, we show the behavior of the angular momentum l2
c for a charged particle

around NC RN BH as a function of rc, for different electric charge q and fixed Θ (left
panel), and for different Θ and fixed q. It is clear that, for the angular momentum of a
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charged massive test particle, we get the same behavior as in the uncharged particle case
(see Figs. 4.27 and 4.28), where in the NC spacetime, we have positive values of the angular
momentum l2

c > 0 near the event horizon, which explain the presence of the new SCO in
this region. As we see, the effect of the particle electric charge q is significant only for
the external region rc > 3 and is negligible in the region near the event horizon. While
the effect of the non-commutativity is significant in the region near the event horizon
and negligible for the external region, the increase in Θ shifted the angular momentum
behavior away from the event horizon, which led to a new condition on the SCO.
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Figure 4.34: Radial dependence of the energy E2
c of a charged test particle orbiting around an NC

RN BH for different values of electric charge of test particle q and a fixed NC parameter
Θ.

The behavior of the energy E2
c of a charged test particle orbiting around an NC RN BH

as a function of rc for different values of electric charge of the test particle q and fixed Θ
and Q. It is clear that the energy behavior is unphysical (E2

c <0) for the region rc < 3 for
the charged test particle, and that due to the many approximations made to calculate the
analytical expression, for an exact solution, we believe that a physical solution appears
near the event horizon as the behavior of angular momentum.

4.6.1 NC effect on the circular orbits of charged particles

In a similar way as we see in SubSec. 4.2.4, we can express the NC geodesic equation of a
charged q massive test particle h = m2

0 in the deformed RN spacetime, where we insert the
NC effective potential (4.66) and the metric component (4.54d) inside the radial equation
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(4.34). The geodesic equation at 3rd order in u the NC correction term (where we use this
fact Θ2u� 1), we obtain(

du
dφ

)2

=
(E2 −m2

0c2)

l2 + 2
(

mm2
0c2 − EqQ

l2

)
u− u2 − Q2(m2

0c2 − q2)

l2 u2 + 2mu3

−Q2u4 +
Θ2

2l2

{
(E2 −m2

0c2)u2 +
(
m(5m2

0c2 − 4E2)− 2EqQ
)

u3} (4.69)

The final geodesic equation for a charged massive test particle around NC RN BH can
be obtained by deriving the above equation with respect to φ.

d2u
dφ2 + ω′′2u =

m′′

l2 + 3mu2 − 2Q2u3 (4.70)

where the parameters ω′ and m are defined as

ω′′2 = 1 +
Q2(m2

0c2 − q2)

l2 − Θ2

2l2 (E2 −m2
0c2), (4.71a)

m′′ = mm2
0c2 − EqQ, (4.71b)

m = m
[

1 +
Θ2

2l2

(
5m2

0c2 − 4E2

2
− EqQ

m

)]
. (4.71c)

By applying the same approximation method [224], the general solution to the above equa-
tion can be expressed as follows:

u(φ) =
m′′

l2ω′′2

(
1 + e cos

(
ω′′φ− 3mm′′

l2ω′′3

(
1− Q2

l2

)
φ

))
. (4.72)

It is clear that, for the case of q = 0, this solution is reduced to the one obtained for the
uncharged test particle (4.61).
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Figure 4.35: Time-like geodesic for charged massive test particle around NC RN black hole Q = 0.2
with m = 3/14, E = 0.993, l = 3.7, and Θ = 0.4 for different particle electric charge
q = −0.2, 0.0, 0.2.

In Fig. 4.35, we show a comparison for a charged uncharged particle in the orbit around
the NC RN BH for a particular solution (4.72) with a given m = 3/14, E = 0.993, l = 3.7,
Q = 0.2, and Θ = 0.4. It is clear that, in the case of the opposite sign between the particle
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and BH electric charge, both gravitational and Coulomb forces are attractive and that this
explains the decreases in major semi-axes of the charged particle q 6= 0 orbit compared
to the neutral particle orbit q = 0 (see left panel Fig. 4.35). However, for the same sign of
the electric charge for both a particle and BH, the Coulomb force is repulsive while the
gravitational force is attractive as before; in this case, we observe inverse behavior as before,
where the Coulomb force dominates and the major semi-axis of the charged particle orbit
is greater than in the neutral case (see right panel Fig. 4.35 ).
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Figure 4.36: Periodic orbits of charged massive test particle around NC RN black hole for fixed
m = 3/14, E = 0.993, Θ = 0.2, Q = 0.1 and varying other parameters l and q.

Some periodic orbits of a charged massive particle in the NC RN spacetime with a
given m = 3/14, E = 0.993, Θ = 0.2, Q = 0.1, and varying the parameters l and q are
shown in Fig. 4.36. Here, we compare the periodic orbits between the charged and an
uncharged massive test particle around NC RN BH. As we see, the electric charge q of
the massive test particle has a significant effect on its motion for both smaller and larger
values of l (see Fig. 4.36), where this particle’s electric charge affects the major semi-axis
and the periastron advance of its orbit, and the Coulomb force dominates in both cases of
attractive and repulsive interaction.

4.7 constraint on the nc parameter Θ from some astrophysical systems

In the astrophysics field, the geodesic equation has a huge application and importance in
the study and understanding of orbital motion around compact, massive objects. In which
we give an estimation of the NC parameter Θ based on the four classical experimental
tests of general relativity.

4.7.1 Gravitational periastron advance in NC spacetime

As we see in the previous sections, we have studied the geodesic motion in different cases
in this geometry, in which we obtained periastron advanced analytical expressions for
different cases.
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4.7.1.1 NC periastron advance in different cases

In order to obtain the analytical expression of the NC orbital precession, we need to write
our geodesic equations for the previous cases. (4.38), (4.59), and (4.70) into the perturbation
form of the Keplerian trajectory equation [230],

d2u
dφ2 + u =

m
l̃2

+
g(u)

l̃2
, (4.73)

where l̃ = l
m0c , and g(u)

l̃2 is defined for each geodesic equation (4.38), (4.59) and (4.70).
According to Ref. [230], the deviation angle after one revolution is given by

∆φ =
πg1

l̃2
. (4.74)

where g1 = dg(u)
du |u= 1

b
, and the distance b is given by b = α(1− e2), with e and α denoting

the eccentricity of the movement and the major semi-axis. In Schwarzschild spacetime, the
function g(u) is given by

g(u)
l̃2

= 3mu2 +
Θ2

2l2

{
(E2 −m2

0c2)u +
3m
2
(5m2

0c2 − 4E2)u2
}

. (4.75)

Using this relation together with (4.74), we find the NC deviation angle.

∆φ =
6πGM

c2α(1− e2)
+ πΘ2

[
(E2

0/c2 −m2
0c2)

2mα(1− e2)
+

6(m2
0c2 − E2

0/c2)

α2(1− e2)2 +
3m2

0c2

2α2(1− e2)2

]
. (4.76)

This result is quite close to the one obtained in Ref. [137], where the authors use only
the star product, while in our case we use the SW map together with the star product. By
using the relativistic relation of dispersion, we obtain

∆φ =
6πGM

c2α(1− e2)
+ πΘ2

[
m2

0v2c2

2GMα(1− e2)
− 6m2

0v2

α2(1− e2)2 +
3m2

0c2

2α2(1− e2)2

]
. (4.77)

It is clear that, for Θ = 0, we recover the commutative expression of general relativity
predictions.

For a neutral particle in the NC RN spacetime, the function g(u) is given by

g(u)
l̃2

= −Q2m2
0c2

l2 u +
Θ2

2l2 (E2 −m2
0c2)u + 3m′u2 − 2Q2u3. (4.78)

In a similar way, by using the above equation together with (4.74), we obtain the NC
precession of the neutral massive test particle.

∆φ =
6πG M

c2 α(1− e2)
− πk Q2

M c2 α(1− e2)
− 6πG k Q2

c4 α2(1− e2)2 +
π c2Θ2

2G M α(1− e2)

{
(E2

0/c2 −m2
0c2)

+
3G M(5m2

0c2 − 4E2
0/c2)

c2 α(1− e2)

}
. (4.79)
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Figure 4.37: Behaviors of the gravitational periastron advance of Mercury in the NC spacetime.

It is clear that, when Θ = 0, we recover the commutative expression. It is worth noting
that the first two terms of this expression are coincident with the result [209, 231], while
in our case we find three terms in the commutative spacetime, where this third term
emerges from the term of the order u4 in the geodesic equation (4.59). Another note: for the
uncharged BH (Q = 0), we recover the result obtained in the NC Schwarzschild spacetime
(4.76).

Therefore, the function g(u) for a charged massive test particle is given by

g(u)
l̃2

= −Q2(m2
0c2 − q2)

l2 u +
Θ2

2l2 (E2 −m2
0c2)u + 3mu2 − 2Q2u3. (4.80)

In the same way, the NC precession of the charged massive test particle is given by

∆φ =
6πG M

c2 α(1− e2)
− πk Q2

M c2 α(1− e2)
− 6πG k Q2

c4 α2(1− e2)2 +
πQ2 q2

mα(1− e2)

+
πc2 Θ2

2G Mα(1− e2)

{
(E2

0/c2 −m2
0c2) +

3G M(5m2
0c2 − 4E2

0/c2)

c2α(1− e2)
− 6E0/c k q Q

c2 α(1− e2)

}
. (4.81)

For the uncharged test particle q = 0, we recover the result in (4.79).

4.7.1.2 Schwarzschild spacetime

As a first numerical application in Schwarzschild spacetime, we take the problem of Mer-
cury orbit and use Eq. (4.77). The NC perihelion shift for the Mercury planet is given by

| δφNC |=
(

1.96689× 1043
)

Θ2Kg2.s−2 (4.82)
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The experimental (observation) and theoretical (GR) predictions of the perihelion shift for
the Mercury planet are given in Ref. [184].

δφobs = 2π (7.98734± 0.00037)× 10−8rad/rev (4.83a)

δφGR = 2π (7.98743)× 10−8rad/rev (4.83b)

As a first estimation of Θ, we compare the NC correction (4.82) to the observable data
(4.83a) (| δφNC |≈ δφobs) and we find

Θ ≈ 1.597× 10−25s.Kg−1, (4.84)

or equivalently:
ΘPhy ≡

√
h̄Θ ≈ 4.104× 10−30m. (4.85)

The lower bound for Θ is defined as follows:

| δφNC | ≤ | δφGR − δφobs |≈ 2π(9× 10−13)rad/rev. (4.86)

Thus, we get:
Θ ≤ 5.652× 10−28s.kg−1, (4.87)

or equivalently:
ΘPhy ≤ 2.441× 10−31m. (4.88)

As we see, our estimation of the NC parameter Θ is very small, as expected from this
theory, and it is remarkable that our result is very close to the one obtained in Ref. [136,
232], where the authors use the NC flat space as a framework in classical mechanics. It is
worth noting that our result is different from the one obtained in Ref. [232] with an order
of 10−1, which occurs because we are using curved spacetime. Furthermore, in Ref. [136],
the authors include a new degree of freedom, γ, in which, with the use of a specific value
of γ, one can obtain the same result as ours. For other planets in our solar system, we use
the experimental data in Refs. [184–186], where the lower bound in the NC parameter is
obtained as follows:

As we see in Table 4.5, the lower bound of the physical NC parameter ΘPhy is in the
same order for the planetary orbit of our solar system ΘPhy ∼ 10−31 m. Moreover, our
results lead us to the same conclusion in Ref. [232]: that the solar system is very sensitive
to the NC parameter, and that means any small change in Θ implies a sensible change at a
large scale. In this way, the NC parameter plays the role of a fundamental constant of our
solar system, which describes the microstructure of spacetime in this region.

Comparing our result with the Planck length, we find that ΘPhy > LP. The NC parameter
also has a lower bound, which is the Planck scale LP:

ΘPhy ≤ (3.5808× 104)LP. (4.89)



4.7 constraint on the nc parameter Θ from some astrophysical systems 99

Table 4.5: Some observable values for different planets of our solar system are: mass of the planet
(M), semi-major axis (α), eccentricity (e), orbital period (T), and orbital precession in
columns 2–6, respectively. The prediction of the orbital precession in general relativity is
in column 7, and in the finale column we give the lower bound for the non-commutative
parameter ΘPhy.

Planet Mass α e T ∆φobs ∆φGR L.b of ΘPhy

(1024Kg) (AU) ( rev
centry ) ( arc−sec

centry ) ( arc−sec
centry ) (10−31m)

Mercury 0, 3301 0.39 0.206 415.203 42.9800± 0.0020 42.9805 ≤ 02.441
Venus 4, 8675 0.72 0.007 162.574 8.6247± 0.0005 8.6283 ≤ 01.805
Earth 5, 9724 1.00 0.017 100 3.8387± 0.0004 3.8399 ≤ 01.635
Mars 6.44171 1.52 0.093 53.175 1.3565± 0.0004 1.3514 ≤ 10.348

Jupiter 1898.19 5.20 0.048 8.431 0.0700± 0.0040 0.0623 ≤ 00.617
Saturn 568.34 9.54 0.056 3.396 0.0140± 0.0020 0.0137 ≤ 00.844

In the natural units, the upper bound of the energy in the presence of non-commutativity
is given by

3.39× 1014Gev ≤ 1
ΘPhy . (4.90)

which also has an upper bound given by Planck energy EP.
As a second example, we consider a strong gravitational system, where we take the

motion of a S2 star with a mass of 10 − 15 M� that orbits around a supermassive BH
Sagittarius A (SgrA*) with a mass of M = 4.260× 106M�, and this star S2 completes one
orbit around SgrA* in 16.052 yer with major semi-axis α = 970 UA [233]. The experimental
observation of the perihelion shift for the S2 star is given in Refs. [210, 233] by,

δφobs = 48.506 fSP(
′′/yer) (4.91)

where fSP is the observational fitting parameter for this system and is confined between
these two values: fSP,min = 0.9 and fSP,max = 1.2 [210]. The theoretical prediction from the
commutative term of Eq. (4.77)

δφGR = 2π (5.98378)× 10−4rad/rev (4.92)

and the NC perihelion shift is given by

| δφNC |=
(
3.58067× 1053)Θ2Kg2.s−2 (4.93)

The lower bound for Θ can be computed using the fitting parameter fSP = 1:

√
h̄Θ ≤ 2.6166× 10−32m (4.94)

As we see, this result is smaller than the result obtained using the Mercury-Sun system
(4.88), and that is due to the use of a strong gravitational field created by supermassive
BH SgrA∗ in the center of galactic. Moreover, if one uses another experimental data as in
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Refs. [5, 210, 233, 234], we get new results that are confined between
√

h̄Θ ∝ 10−31m and√
h̄Θ ∝ 10−32m, and that leads us to this conclusion: to get a better estimation of the NC

parameter Θ, it is very important to use an experimental measurement with good accuracy.

4.7.1.3 Uncharged massive test body case in RN spacetime

For the case of an uncharged massive test body, we must use (4.79) to find a lower bound
for the NC parameter Θ.

Firstly, we take the same previous example of the Mercury plant around the sun. In the
RN spacetime, we take the possibility of the Sun’s having an electric charge Q�, where its
electric charge has some constraint as in Ref. [234] (0.48× 1018 6 Q� 6 1.5× 1018 C). For a
numerical application to the NC perihelion shift of the Mercury planet, we find

| δφNC |=
(

1.96689× 1043
)

Θ2Kg2.s−2 (4.95)

The experimental observation of the perihelion shift for Mercury orbits [184, 235] and the
commutative theoretical prediction from Eq. (4.79) with the sun’s electric charge (Q� =

1.5× 1018 C) [234] are given by

δφobs = 2π (7.98734± 0.00037)× 10−8rad/rev (4.96)

δφRN = 2π (7.98732)× 10−8rad/rev (4.97)

The lower bound of Θ is defined as follows:

| δφNC | ≤ | δφRN − δφobs |≈ 2π(2× 10−13)rad/rev (4.98)

So we get: √
h̄Θ ≤ 1.63266× 10−31m (4.99)

As we see, this result is smaller but in the same order as the one obtained for uncharged
sun in Schwarzschild spacetime (4.88). This lower bound can be reduced to the order√

h̄Θ ∝ 10−32 if we choose a particular value of the sun’s charge: Q� = 1.35× 1018 C.
For the second example, we take the same system of S2 stars orbiting around a su-

permassive BH SgrA∗, with the possibility that BH SgrA∗ is charged electrically (see
Ref. [234]), where the authors predicted that the electric charge of SgrA∗ is given by
QSgrA∗ 6 3.6 × 1027 C. The theoretical prediction of perihelion shift for this system can
be obtained using the commutative term of Eq. (4.79).

δφRN = 2π (5.98359)× 10−4rad/rev (4.100)

with QSgrA∗ ∝ 1025 C, so the lower bound of Θ for the case fSP = 1 is given by

√
h̄Θ ≤ 2.575× 10−32m (4.101)
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This result is shifted with a coefficient of 0.0416 from the case of an uncharged super-
massive black hole SgrA∗ with the same order (4.94), in which the effect of the electric
charge is so small and can be considered negligible. Also, if we vary the electric charge Q,
we obtain a lower bound on Θ between

√
h̄Θ ∝ 10−31m and

√
h̄Θ ∝ 10−32m.

4.7.1.4 Charged massive test body case in RN spacetime

In the possibility that the massive test object is charged electrically, we must use Eq(4.81).
As a numerical application, we take the same example system as before for our Mercury-
Sun system, and we take into account that the Mercury planet has an electric charge of
q, which is expected to be in the order of q 6 3.89× 109 C [235]. The effect of the electric
charge of the Mercury planet q is negligible in the commutative and in the NC term, and
the result is the same as in the case of the uncharged test body q = 0 (4.99), which means
the electric charge of the test particle does not affect the properties of spacetime.

4.7.2 Gravitational red-shift

The gravitational red-shift, also known as the Einstein effect, and its analytical expression
in the NC Schwarzschild spacetime can be obtained by following the same steps as in
Sec. 1.2, where we use the NC line element in the equatorial plane (4.1), and after some
calculation we find

ẑ =

√∣∣∣∣ ĝ00(r2, Θ)

ĝ00(r1, Θ)

∣∣∣∣− 1 (4.102)

When Θ = 0, we recover the commutative expression (1.37).
For an asymptotic observer r2 → ∞, the measured red-shift for the NC Schwarzschild

black hole is given by ẑ:

ẑ = z

1−
(

z + 1
z

) m
(

88m2 + mr1

(
−77 + 15

√
1− 2m

r1

)
− 8r2

1

(
−2 +

√
1− 2m

r1

))
32r3

1(r1 − 2m)2
Θ2

 , (4.103)

where z is the commutative red-shift, which is given by (1.37) with r2 → ∞ and m = G M.
In Fig. 4.38, we show the effect of non-commutativity on the gravitational red-shift. As

we see the non-commutativity affect the red-shift behavior near the event horizon, and
when we move away from this region, their effect becomes negligible.

In order to obtain an estimation of the NC parameter, we use the proposition proposed
in Ref. [236], which states that the NC correction should be smaller than the accuracy of
the experimental measurements, which is 7× 10−9, so we get

∣∣∣∣ ẑ− z
z

∣∣∣∣ = ( z + 1
z

) m
(

88m2 + mr1

(
−77 + 15

√
1− 2m

r1

)
− 8r2

1

(
−2 +

√
1− 2m

r1

))
32r3

1(r1 − 2m)2
Θ2,

6 7× 10−9. (4.104)
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Figure 4.38: Behavior of the gravitational red-shift in NC spacetime.

The upper bound for Θ can be written as follows:

Θ2 6
7× 10−9 ×

( z
z+1
)

32r3
1(r1 − 2G M)2

G M
(

88(G M)2 + G Mr1

(
−77 + 15

√
1− 2G M

r1

)
− 8r2

1

(
−2 +

√
1− 2G M

r1

)) , (4.105)

As a numerical application, we follow the same step as in Ref. [237], where we use
the data of a typical micro BH, with a radius and mass given by r1 ∼ 1.5× 10−3 m and
G M ∼ 5× 10−4 m, respectively. According to Ref. [238], for a space-space NC matrix, the
obtained result should be multiplied by the square of the scale factor at the end of inflation
α ≈ 10−29 to obtain a physical result, so we get

ΘPhy =
√

α2Θ2 6 2.09× 10−36 m. (4.106)

Our estimation of this case shows better results compared to the one obtained from the
study of the perihelion shift of orbit, where this result is different from the previous one
by 10−4, and that is around the Planck scale. It is worth noting that the estimation of
Θ depends on the accuracy of the experimental measurements. For example, if one uses
another experiment with different accuracy, such as 7× 10−5 [239], in this case the NC
parameter is given by

ΘPhy =
√

α2Θ2 6 2.09× 10−34 m. (4.107)

As we see, the accuracy of the experimental measurements is very important to test the ef-
fect of non-commutativity and get a good estimation for Θ. In this case, the NC parameter
is close to the Planck scale and deviates by 10−2 from the one obtained in (4.94).
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4.7.3 Gravitational deflection of light

In which follow we investigate the effect of non-commutativity on the deflection of light,
where we follow the same steps as in Sec. 1.2. For that, we use Eq. (4.5), together with the
conserved quantity (4.4b), to obtain the Eq of φ as a function of r. With some algebra, we
find

∆φ̂ = 2
∫ ∞

b

√
ĝ11(r)
ĝ33(r)

(
ĝ33(r)
ĝ33(b)

∣∣∣∣ ĝ00(b)
ĝ00(r)

∣∣∣∣− 1
)

dr− π. (4.108)

To compute this integral, we need to expand our expression on the first order in m/r
and in m/b for the commutative term, and in the leading order in the NC correction, with
m = GM.

∆φ̂ ≈ 2
∫ ∞

b

1

r
√( r

b

)2 − 1

[
1 +

m
r
+

mr
b(b + r)

+

(
b4(7m− 2r) + b3(7m− 2r)r

16b3r3(b + r)

+
br3(−5m + 2r) + b2r2(−3m + 2r)− 5mr4

16b3r3(b + r)

)
Θ2 + ...

]
dr− π, (4.109)

After integrating the above equation, we get:

∆φ̂ =
4GM

b
− 8GM− 3bπ + 6GMπ

48 b3 Θ2. (4.110)

The above expression represents the NC gravitational deflection of light, and when Θ = 0,
we recover the commutative expression (1.32).
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Figure 4.39: Behavior of the gravitational deflection of light in NC spacetime

In Fig. 4.39, we show the behavior of the light deflection in the NC Schwarzschild space-
time. It is clear that the non-commutativity removes the divergence of the light deflection
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for a smaller impact parameter b, and for large values of b, the NC effect becomes negligi-
ble.

In order to give an estimation to the NC parameter for this phenomenon, we use the fact
that the NC correction should be smaller than the accuracy of the measurements, which is
2.91× 10−7 [240]. ∣∣∣∣∆φ̂− ∆φ

∆φ

∣∣∣∣ = 3bπ − 2m(4 + 3π)

194GM b2 Θ2 6 2.91× 10−7, (4.111)

So the upper bond of Θ is:

Θ2 6 2.91× 10−7 194GM b2

3bπ − 2m(4 + 3π)
. (4.112)

For numerical application, using the radius r1 ≡ b = 1.5× 10−3 m of the micro-BH, we get:

ΘPhy =
√

α2Θ2 6 7.787× 10−35 m. (4.113)

When we use the gravitational deflection of light, we find that the estimation of Θ is in
the Planck scale, and it is different with an order of 10−1 form (4.106)-(4.107) using the
red shift and with a difference of order of 10−3 from the obtained one using the perihelion
shift (4.94).

4.7.4 Gravitational time delay (Shapiro effect)

For the NC gravitational time delay, we follow the same steps as in Sec. 1.2, where we use
Eq. (4.5), together with the first conserved quantity (4.4a), to obtain the Eq of coordinate
time t as a function of r. Supposing now that the same example of a radar signal travels
from the Earth r = rE to Venus r = rV (see Fig. 1.5), then the time delay is given by

∆t̂ = 2
[
t̂(rE, b) + t̂(rV , b)−

√
b− rE −

√
b− rV

]
, (4.114)

with:

t(r, b) =
∫ r

b

√
g11(r′)
|g00(r′)|

(
1− g33(b) |g00(r′)|

g33(r′) g00(b)

)−1/2

dr′, (4.115)

As a first step, we expand the above expression in linear form and stop in the leading
order in m/r and m/b.

t̂(r, b) ≈
∫ r

b

r√
r2 − b2

[
1 +

2m
r

+
m b

r (r + b)
+

(
1

8r2 −
3m

16br(r + b)
+

bm
16r3(b + r)

− m
16r2(b + r)

)
Θ2 + ...

]
dr′. (4.116)
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The integral of the above equation is given by

t̂(r, b) =
√

r2 − b2 + 2m ln

(
r +
√

r2 − b2

b

)
+ m

(
r− b
r + b

)1/2

+

(
m

16b r

(
r− b
r + b

)1/2

+
b−m

8b2 arctan

(√
r2

b2 − 1

))
Θ2. (4.117)

We take into consideration that rE � b and rV � b, so we get:

t̂(rE, b)−
√

r2
E − b2 ≈ 2m ln

(
2rE

b

)
+ m + Θ2

(
m

16brE
+

b−m
8b2 arctan

( rE

b

))
, (4.118)

Inserting the above equation in the relation (4.117), we get the total expression of the
gravitational time delay in the NC spacetime.

∆t̂ ≈ 4GM
[

ln
(

4rE rV

b2

)
+ 1
]
+

GM
8b2

(
b− GM

GM

(
arctan

( rE

b

)
+ arctan

( rV

b

))
+

b(rE + rV)

2rErV

)
Θ2. (4.119)
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Figure 4.40: Behavior of the gravitational time delay in the NC spacetime.

For the estimation of Θ for Shapiro time delay, we use the fact that the NC correction
should be smaller than the accuracy of the measurements, which is 2.91× 10−7 [240].

∣∣∣∣∆t̂− ∆t
∆t

∣∣∣∣ =
(

b−GM
GM

(
arctan

( rE
b

)
+ arctan

( rV
b

))
+ b(rE+rV)

rErV

)
32b2

[
ln
(

4rE rV
b2

)
+ 1
] Θ2 6 2.91× 10−7, (4.120)
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So the upper bound expression of Θ is given by:

Θ2 6 2.91× 10−7
32b2

[
ln
(

4rE rV
b2

)
+ 1
]

(
b−GM

GM

(
arctan

( rE
b

)
+ arctan

( rV
b

))
+ b(rE+rV)

rErV

) , (4.121)

For the scale of the micro-BH, the ration 4rErV
b2 is the same at the solar system scale, so the

numerical application gives us

ΘPhy 6 4.089× 10−34 m (4.122)

Another result shows that the NC parameter is closer to the Planck scale. For the different
experimental tests of GR, the non-commutativity affects the spacetime at the Planck scale.

4.7.5 Results and discussion

As we see in the previous subsections, the estimation of the NC parameter Θ based on the
four classical tests of GR shows good results, in which this parameter is located around
the Planck scale. We summarize our results in the following Table 4.6:

Table 4.6: Upper bound on the NC parameter ΘPhy for the classical tests of general relativity.

Experiment Physical bound on ΘPhy (m)

Periastron advance ΘPhy 6 (2.378× 10−31 − 2.6166× 10−32)

Red-shift ΘPhy 6 2.09× (10−34 − 10−36)

Deflection of light ΘPhy 6 7.787× 10−35

Time delay ΘPhy 6 4.089× 10−34

As a first application, we chose the periastron advance of mercury and then generalized
it to our solar system, where the NC parameter acts as a fundamental constant for several
planets and is found in the order of ∼ 10−31 m. The extend of this application to a strong
gravitational system as the star S2 around SgrA* shows a better estimation of the NC para-
meter, which is found in order of ∼ 10−32m. It is worth noting that, when we generalized
the periastron advance to a RN spacetime, we found that, in the case of using the electric
charge, our results did not exceed the same order as those of an uncharged gravitational
source. We also found that the electric charge of a massive test body had a negligible effect
on the estimation of NC. Secondly, we use red-shift, light deflection, and time delay to
obtain an estimation of the NC parameter. We use a microscopic system, where we choose
the data of a microscopic BH at the early universe3. In the case of the red-shift, we find
that the NC parameter is in order between 10−34 m and 10−36 m; this difference is due to
the accuracy of the measurement used, while in the case of light deflection and time de-
lay, we obtain an estimation of Θ in order of 10−35 and 10−34, respectively. Moreover, the

3 For the experimental tests that use a radio wave or a light bound, we cannot use a macroscopic system because
the NC correction term is so small to be detected experimentally.
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most stringent constraint comes from the light deflection, which gives us ΘPhy ∼ 10−35m.
However, we confirm that the non-commutativity of spacetime appears in the Planck scale.





5
T H E R M O D Y N A M I C S P R O P R I E T I E S O F T H E
D E F O R M E D B L A C K H O L E

In this present chapter, we investigate in detail the thermodynamic properties of the deformed
Schwarzschild BH in the presence of non-commutativity for a different choice of the NC matrix
(see Chap. 3). In this study, we are interested in two approaches to BH thermodynamics in the NC
geometry and for different scenarios. First, we use the classical approach [170, 172] to investigate
its thermal stability and phase transition in different cases. Then, we present a new treatment
of non-commutativity that allows us to establish a similarity between the RN BH and the NC
Schwarzschild BH [172]. Also, we present the discussion of thermal stability and phase transition
of the NC Schwarzschild BH inside a spherical isothermal cavity [171]. In the second approach,
we study Hawking radiation as a quantum tunneling process of massless particles from BH in
the context of NC gauge theory, in which we investigate two scenarios, thermal and non-thermal
radiation [173]. Finally, we examine some of the BH phenomenology quantities inspired by the NC.

This chapter is organized as follows: In Sect. 5.1, we present a detailed study of the in-
fluence of non-commutativity on the thermodynamic properties of the deformed Schwarz-
schild BH, using the classical approach of BH thermodynamics, then investigate their sta-
bility and phase transition, and also establish a connection between this geometry and the
electric charge of RN BH, where we deal with this geometry with different scenarios. In
Sect. 5.3, we study the thermal stability and phase transition of NC Schwarzschild BH
inside a spherical isothermal cavity. In Sect. 5.4, we present a detailed analysis of the quan-
tum tunneling process of massless particles from the NC Schwarzschild BH, and we also
show the effect of this geometry on the number of particles that are emitted in two sce-
narios of pure thermal and non-thermal radiation. In Sects. 5.5, we show the NC effect on
the evaporation process of the Schwarzschild BH, where we study their luminosity, energy
emission rate, and BH lifetime.

109
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5.1 classical black hole thermodynamics in nc spacetime

In this section, we investigate the thermodynamic properties of the deformed Schwarz-
schild BH (see Sec. 3.2) in the context of the NC gauge theory. This study allows us to
understand the non-commutativity of spacetime, which leads to a better understanding of
the quantum effect of gravity on BH physics. In this investigation, we use the classical ap-
proach of BH thermodynamics, which is based on the geometry and laws of BH mechanics
(see Sec. 1.3). In this context, the NC first law of BH thermodynamics for Schwarzschild
case has become

dm̂ = T̂dŜ . (5.1)

where m̂, T̂, and Ŝ are the mass, temperature, and entropy of the NC Schwarzschild BH,
respectively. In which follow, we use the deformed metric of Schwarzschild spacetime
given in Sec. 3.2.

5.1.1 Mass, temperature, and entropy of the NC Schwarzschild black hole

As a first step, we compute the BH ADM mass for the NC Schwarzschild one, and that
can be obtained as a function of the NC parameter M̂ = rNC

h /2 [165, 166], which is easy
to prove by solving the equation 1/ĝ11(rNC

h ) = 0 for m. In the case of a = 0 and b = Θ,
the expression of this mass is a function of the event horizon rh, Θ, and the observational
angle θ, which is given by

M̂ =
rh

2
+

3
16rh

Θ2 sin2 θ

= m + MNC(θ, Θ) , (5.2)

where m = rh/2 is the commutative Schwarzschild mass and MNC(θ, Θ) is the NC correc-
tion term that depends on the angle θ, which means this mass describes the partial mass
contributed by the NC correction to this BH. Thus, the total mass of the NC BH can be
computed as follows:

m̂ =
1∫ 2π

0

∫ π
0

√
ĝ22 ∗ ĝ33 dθ dϕ

∫ 2π

0

∫ π

0
M̂
√

ĝ22 ∗ ĝ33 dθ dϕ . (5.3)

Then, using the deformed components of the metric given by (3.9d) and (3.9e) in the same
above condition, we obtain the expression of the NC BH mass up to second order in the
NC parameter Θ.

m̂ = m +
Θ2

8 rh
, (5.4)

It is clear that in the commutative limit Θ = 0, we obtain the Schwarzschild BH mass.
The behavior of the NC Schwarzschild BH mass as a function of the event horizon for

various values of the NC parameter Θ is shown in Fig. 5.1. As we see, the effect of the non-
commutativity shows a new behavior of the BH mass, contrary to the commutative one,



5.1 classical black hole thermodynamics in nc spacetime 111

Θ = 0.0

Θ = 0.1

Θ = 0.2

Θ = 0.3

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

rh

m

Figure 5.1: Behavior of BH mass as a function of rh.

in which the behavior of the mass is in the linear depend with the event horizon radius
m = rh/2 and vanishes at the origin, while in the NC case this geometry prevents the
mass from vanishing at the origin and presents a minimal value m̂0 = 0.5 Θ away from the
origin at rh = r0 = 0.5 Θ (in this case the NC parameter Θ plays the role of the mass, as was
found in our previous chapters (see Chap. 3 and 4)). This new minimum increases with
the increase in the NC parameter Θ, and that means the non-commutativity prevents the
mass from vanishing by creating a new minimum mass at the origin of the BH. It is clear
that if rh → 0 then m̂→ ∞, and this corresponds to the singularity of the BH at the origin
of the commutative case and became an unphysical region because, as we see in Chap. 3,
the noncommutativity shifted the singularity of the origin to a finite radius r = 2m. It is
worth noting that the result of the effect of non-commutativity is a clear confirmation that
the theory of GR links the geometry of spacetime and mass (gravity) together.

5.1.1.1 Hawking temperature

In the presence of non-commutativity, the geometry of the Schwarzschild BH is deformed,
and this deformation leads to a modification in the geometrical quantities. In this context,
the NC surface gravity κ̂ of the deformed Schwarzschild BH is given by

κ̂ = − 1
2
√
−ĝ00(r, Θ)ĝ11(r, Θ)

∂ĝ00

∂r

∣∣∣∣
r=rNC

h

, (5.5)

As we know, in the semi-classical framework, the Hawking temperature is related to the
surface gravity by the relation (1.46); also, in the NC framework, the deformed Hawking
temperature is related to the above deformed surface gravity by T̂H = κ̂

2π . By using the
deformed Schwarzschild metric given in Sec. 3.2 with a, b 6= 0 (see the schematic picture in
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Fig. 3.2 for more detail on this geometry), we expanded our expression up to (1/r4), and
we stopped at the second order in Θ. The NC Hawking temperature is given by

T̂H =
1

4πrh
− 3

8πr3
h
(a2 + b2 sin2 θ) . (5.6)

It is clear that the above expression depends on the observation angle θ and that due to
the presence of non-commutativity, which deformed the symmetry of the BH and trans-
formed into a spherical asymmetric. Moreover, this expression describes the four scenarios
of BH in this geometry for different possibilities on a and b (see Fig. 3.2) for our choice of
the NC matrix. It is worth noting that the NC Hawking temperature is the same as that
in ordinary spacetime when θ = 0, π for the choice of a = 0, b = Θ, which is actually a
direct consequence of the NC parameter choice being perpendicular to the plane of rota-
tion created by the non-commutativity of coordinates. Furthermore, the depends of NC
temperature on the observational angle θ mean that the radiation of BH is not the same
in all directions of observation in this geometry for b 6= 0, while in the case of b = 0 and
a = Θ this particular result vanishes, and the BH has the same radiation in all directions as
in the commutative case a = b = 0, where the commutative expression is recover (1.46).
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Figure 5.2: Behavior of NC Hawking temperature as a function of the event horizon rh, with differ-
ent Θ (left panel) and for different θ (right panel) for the case a = b = Θ.

The behavior of Hawking temperature in the NC spacetime as a function of the event
horizon rh for the case a = b = Θ is shown in Fig. 5.2, for a different NC parameter Θ in the
left panel and for a different observational angle Θ in the right panel. It is clear that from
the left panel, the non-commutativity removes the divergence behavior that appears in the
commutative spacetime, and this geometry cool-down the BH radiation. Moreover, in the
right panel, we show the impact of our choice of non-commutativity, in which the radiation
of the BH is note the same in all directions of observation, where the radiation at the poles
of the NC Schwarzschild BH (θ = 0, π) is more active compared to the equatorial plane,
and that means the poles are more hot (high temperature) compared to the temperature
emitting from the equatorial plan. This difference in temperatures between poles-equator
increases during the BH evaporation. Also, we can see that, during the evaporation, the
NC Hawking temperature of this deformed BH increases until it reaches a maximum value
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T̂max
H = 0.0177

Θ
√

1+sin2 θ
at the critical horizon radius rc

h = 2.12136 Θ
√

1 + sin2 θ, then quickly

falls to zero at a new minimum of BH size rmin
h = 1.226Θ

√
1 + sin2 θ, from this result and

from the right panel, we can conclude that the BH stops radiation in the equator before
the pols, and that led to a new scenario of evaporation.
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Figure 5.3: Behavior of NC Hawking temperature as a function of the event horizon rh, with differ-
ent Θ (left panel) and for different θ (right panel) for the case a = 0, b = Θ.

In Fig. 5.3, we present the NC Hawking temperature for the cases a = 0 and b = Θ, with
different Θ in the left panel and for different θ in the right panel. As we see, the global
behavior of these two scenarios is the same, except at the two poles (θ = 0, π), where the
NC effect vanishes. Another difference is in the maximum temperature and the minimum
size of the BH, which are given by T̂max

H = 0.025009
Θ sin θ , the critical size rc

h = 2.12132 Θ sin θ,
and the minimum size rmin

h = 1.2247Θ sin θ, and also in this scenario the BH stop radiation
in the equator before their poles and the above one. Furthermore, for the cases a = Θ
and b = 0, the deformed BH emit the same radiation in all directions, and the BH stop
evaporation in all directions at the same time. At this point, we see all the possibilities of
the radiation from the different scenarios of NC BHs present in Fig. 3.2.

It is worth noting that there are some models and observations that predicted the dif-
ference in temperature between the poles and the equator of the sun in the literature, e.g.,
[241–244]. This difference in temperature between poles-equator appears only in the NC
spacetime, and it increases with Θ for small BHs as well (see Fig. 5.4).

In order to find an estimation of the NC parameter Θ, we use the temperature emitted
from the total surface horizon of BH, and we take the choice of a = 0 and b = Θ. This
temperature can be computed as follows:

T̂ (rh) =
1∫ 2π

0

∫ π
0

√
ĝ22 ĝ33dθdϕ

∫ 2π

0

∫ π

0
T̂ (rh, θ)

√
ĝ22 ĝ33dθdϕ

=
1

4πrh
− Θ2

4πr3
h

. (5.7)

In the commutative limit Θ = 0, we recover the Hawking temperature of the Schwarz-
schild BH (1.46).
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Figure 5.4: Behavior of NC temperature distribution as a function of the observation angle θ and
NC parameter Θ, for the two cases, a = b = Θ (left panel) and a = 0, b = Θ (right
panel), with rh = 0.8.
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Figure 5.5: Behavior of NC temperature emitted from the surface horizon of the BH as a function
of rh, for the case a = 0, b = Θ.

The behavior of the NC Hawking temperature emitted from the surface horizon of the
NC Schwarzschild BH as a function of the event horizon rh is shown in Fig. 5.5. As we see,
we have the same behavior as the above scenarios, where the temperature emitted from
the surface horizon increases to reach a maximum value T̂max = 0.031/Θ at the critical
horizon radius rc

h = 1.732 Θ, then quickly falls to zero at the minimum horizon radius
rmin

h = Θ, in which this BH cannot radiate anymore with this minimum, and that means
there are no more processes of particle creation near the event horizon with rh = rmin

h , and
that corresponds to the minimal mass m̂0 = rmin

h /2 = 0.5 Θ, which is called the remnant
BH. The effect of this geometry is now clear, in which the non-commutativity removes the
divergence behavior of the BH radiation that appears in the final stage of evaporation in a
similar way to the electric charge of RN BH [245].
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To get an estimation of the NC parameter Θ, we use the back-reaction point of the BH
temperature. At this point, the thermal energy and the temperature are equivalent and are
given by1 Eth = T̂max and at this point the mass of the BH m̂ = G

2 rc
h = 0.866 ΘM2

Planck.
The thermal energy and mass of the BH should be of the same order of magnitude at the
critical point rC

h for a significant result, and the NC parameter can be estimated as

Θ ≈ 1.523× 10−35m ∼ lPlanck . (5.8)

The above value of the NC parameter Θ is close to the ones obtained in our previous Chap.
4. Moreover, this result is good according to the one obtained using the gravitational wave
experimental data [246], which is on the Planck scale. It is clear that our results obtained
using the gauge theory do not exceed the Planck scale. However, there exist few papers that
study the BH thermodynamics in NC spaces where present a bound on the NC parameter
of the order Θ ∼ 10−1lPlanck, as in [145, 247–249], and that confirms the NC property of
spacetime appears close to the Planck scale.

5.1.1.2 Entropy

In which follow, we use the choice2 of a = 0 and b = Θ. As we have observed so far, the
non-commutativity modified the geometry structure of the Schwarzschild BH. Let’s now
turn to a second geometrical quantity, which is the NC BH area, and is defined by

ANC
h =

∫ 2π

0

∫ π

0

√
ĝ22 ∗ ĝ33 dθ dφ . (5.9)

The above integral can be computed by using the deformed metric components (3.9d) and
(3.9e), and we take the result up to second order in Θ, then we obtain the NC area of the
deformed Schwarzschild BH.

ANC
h =2π

∫ π

0

[
rNC

h +
3rNC

h −m +
(
m + rNC

h

)
cos(2θ)

16 rNC
h

]
sin θ dθ,

=4πr2
h +

5π

2
Θ2 +O(Θ4) . (5.10)

In order to obtain the expression of the NC entropy, we use the relation that relates the
entropy with the area of the BH given in (1.47). In this case, we use the NC area Ŝ = ANC

h /4
given by the above expression. Thus, we get

Ŝ = πr2
h +

5π

8
Θ2 . (5.11)

It is clear that, in the commutative spacetime Θ = 0, the usual entropy of the Schwarzschild
BH is recovered (1.47).

1 In natural units system (h̄ = kB = c = 1).
2 The same calculations can be made for the others choice of a and b, and the only difference is in the correction

factor, and the physics of the quantity is conserved for any choice of the NC matrix.



116 thermodynamics proprieties of the deformed black hole

Θ = 0.0

Θ = 0.1

Θ = 0.2

Θ = 0.3

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

0 0.4 0.8 1.2 1.6

2

4

6

8

10

rh

S

Figure 5.6: Behavior of NC entropy as a function of rh.

The entropy behavior of the NC Schwarzschild BH as a function of the event horizon
rh is shown in Fig. 5.6. It is clear that we observe a significant difference between the
commutative and NC entropy for smaller BH, and it becomes negligible for larger ones.
Another important observation in this deformed entropy is the non-zero entropy (5.12) that
appears in the final stage of evaporation, which is a consequence of the quantum structure
of spacetime.

lim
rh→0

Ŝ = SΘ
0 ≈

5π

8
Θ2. (5.12)

The above expression emerges from the pure quantum structure of spacetime, which origi-
nates from non-commutativity. This remnant of entropy is a consequence of an existing BH
that evaporated before, since the entropy is related to the area of the BH via SΘ

0 = AΘ
0 /4,

which implies that, after the evaporation process, the NC BH still has a quantum area
corresponding to quantum entropy3. This strange quantum object has a quantum area AΘ

0

with a minimal mass m̂0 = 0.5 lp and a minimum size rmin
h = lP, which can be considered

a microscopic remnant BH.

5.1.2 Heat capacity and phase transition

In order to investigate the thermal stability of the NC Schwarzschild BH, we must check
the behavior and signature of its heat capacity in this geometry. As a first step, we investi-
gate the partial heat capacity; for that, we use the partial deformed Hawking temperature

3 This note is valid only if the area law of BH is correct in the NC gauge theory, and we present the correct
correction to the entropy in the following section
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given by Eq. (5.6) to see the stability of each region from the equator to the poles and
examine their phase transition. In this case, the heat capacity is given by

Ĉ = T̂H

(
∂Ŝ

∂T̂H

)
= T̂H

(
∂Ŝ
∂rh

)(
∂T̂H

∂rh

)−1

= −2πr2
h
(2r2

h − 3Θ2 sin2 θ)

(2r2
h − 9Θ2 sin2 θ)

, (5.13)

where we use the NC entropy (5.11) and the NC Hawking temperature (5.6). In Fig. 5.7,
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Figure 5.7: Behavior of Schwarzschild BH heat capacity as a function of the event horizon rh, for
different values of Θ (left panel) and for different values of θ (right panel).

we show the behavior of the NC heat capacity of the deformed Schwarzschild BH in NC
spacetime. It is clear that in the commutative limit Θ = 0, we recover the standard behavior
of heat capacity, in which the phase transition of the Schwarzschild BH does not exist
because their behavior is always negative. From the left panel of this figure, we see clearly
that the heat capacity is equal to zero at rh = rmin

h , which corresponds to the minimum
size when the BH stop radiation (see Fig. 5.3), and that means this BH has one physical
limitation point [250] and has a divergence at rh = rcrit

h , where this corresponds to the back-
reaction point of the BH radiation (in Fig. 5.3 corresponds to the maximum temperature),
which implies one phase transition point. According to the right panel, we see that the
physical limitation point rmin

h and the back reaction point rcrit
h are different from direction

to the other, and that is due to the presence of the observational angle θ in our expression of
the partial heat capacity (5.13). This indicates that the deformed BH with the choice a = 0
and b = Θ (even for a = b = Θ) has a new scenario of evaporation, in which the phase
transition rcrit

h occurs in the equator before the two poles. Also, this BH stops radiation rmin
h

from the equator region before the other direction, and that means the evaporation of the
deformed Schwarzschild BH in this geometry begins the evaporation from the equator and
goes up to the two poles. It is worth noting that all limitation points rmin

h for different NC
parameter Θ or different observational angle θ and also for the divergence points rcrit

h are
consistent with the profiles of T̂H − rh in Fig. 5.3 for the left and right panels, respectively.
For the investigation of stability, we leave it for the global analysis of the heat capacity.

Now we check the global heat capacity of this deformed BH for more information about
the phase transition and its thermal stability. For that, we use the same above definition
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with the global temperature emitted from the surface horizon of the NC Schwarzschild
BH

Ĉ = −2πr2
h
(r2

h −Θ2)

(r2
h − 3Θ2)

, (5.14)

In this case, we are using the Hawking temperature given by Eq. (5.7) and the entropy (Eq.
(5.11)). The behavior of the global heat capacity emitted from the surface horizon of the NC

Θ = 0.0

Θ = 0.1

Θ = 0.2

Θ = 0.30.00 0.05 0.10 0.15 0.20 0.25 0.30

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 0.5 1 1.5

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

rh

C

Figure 5.8: Behavior of the global heat capacity as a function of rh in the case of a = 0 end b = Θ.

Schwarzschild BH as a function of the event horizon rh for different Θ is shown in Fig. 5.8.
It is clear that the behavior of the global heat capacity is similar to the partial distribution of
the radiation obtained above; the only differences are the points of physical limitation and
the phase transition. In this case, the physical limitation point rh = rmin

h and the divergence
at rh = rcrit

h are consistent with the point when the BH stop radiation and the point of the
back-reaction in the profile T̂− rh in Fig. 5.5. In this geometry, a non-equilibrium (unstable)
system has a negative heat capacity for rh > rcrit

h , which corresponds to a large massive
BH, while for a system in equilibrium (a stable one), it has a positive heat capacity for
rmin

h < rh < rcrit
h , which corresponds to the smaller BH. As we see above, the divergence

point rcrit
h of heat capacity describes a phase transition of the NC Schwarzschild BH in

this geometry, and this point is increasing with the growth of Θ. Also, the stable stage
rmin

h < rh < rcrit
h , which has a positive heat capacity, increases with Θ, and that means the

NC Schwarzschild BH takes longer to stop radiating and evaporating for the large values
of Θ.
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5.1.3 Helmholtz free energy and black hole stability

For more details on the phase transition and thermal stability, we need to analyze the
Helmholtz free energy, which is given as the Legendre transform of the ADM mass.

F̂ = m̂− T̂Ŝ. (5.15)

where we use the global temperature that is emitted by the surface horizon of the BH given
by Eq. (5.7).
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Figure 5.9: Behavior of Helmholtz free energy F̂ as a function of rh in NC spacetime.

In Fig. 5.9, we plot the behavior of Helmholtz free energy of the NC Schwarzschild BH
as a function of the event horizon rh. As we see, in the NC spacetime, the Helmholtz free
energy behavior has a minimum, which is given by

∂F̂
∂rh

= 0 , (5.16)

and the location of this minimum increases with the increase of the NC parameter Θ,
which corresponds to a stable region. This result is consistent with the profile Ĉ − rh ob-
tained in Fig. 5.8, which means that a smaller BH is more stable compared to a larger
one.

The effect of temperature on the NC Helmholtz free energy is shown in Fig. 5.10, where
we plot the following expression for different Hawking temperatures T̂

F̂ =
rh

2
− πr2

hT̂ + Θ2
(

1
8rh
− 5π

8
T̂
)

. (5.17)
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Figure 5.10: Behavior of Helmholtz free energy F̂ as a function of rh in NC spacetime for different
Hawking temperatures T̂.

In Fig. 5.10, we plot the behavior of the NC Helmholtz free energy for different values of
Hawking temperature. It is clear that when taking into account the Hawking temperature,
a new extremum appears in the behavior of the Helmholtz free energy, which results in
two extrema (stable and unstable), where we can obtain their location by solving Eq. (5.16).
From this behavior, we conclude that a maximum Helmholtz free energy corresponds
to a large BH, which is unstable thermodynamically, while a minimum Helmholtz free
energy corresponds to a smaller one, which is stable thermodynamically, contrary to the
commutative Schwarzschild BH, which is always unstable.

The behavior of the NC Helmholtz free energy F̂ as a function of the NC Hawking tem-
perature T̂ for different values of Θ is shown in Fig. 5.11. As we see in this geometry, the
Helmholtz free energy decreases rapidly with increases in Hawking temperatures (from
infinity at T̂ ∼ 0) until it reaches the maximum temperature T̂max. Moreover, when the
temperature bounces back from a maximum T̂max, the free energy starts to increase at a
slow rate, and this rate becomes more rapidly when we increase Θ, while in the commu-
tative case Θ = 0, the Helmholtz free energy does not change its behavior during the
BH evaporation. It is worth noting that this behavior is similar to the one obtained with
a modified first law of BH thermodynamics, where we take into account the surface ten-
sion as in Refs. [67–69]. However, in our results, this behavior emerges from the quantum
properties of spacetime in the NC Schwarzschild spacetime. According to these works,
non-commutativity can be seen as a spacetime tension on the quantum scale.
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Figure 5.11: Behavior of the Helmholtz free energy F̂ as a function of the NC Hawking temperature
T̂.

5.1.4 The black hole pressure and Hawking-Page-like phase transition

The authors of the following recent papers [251–253], show that if one uses quantum grav-
itational corrections to the BH thermodynamics for the Schwarzschild case, these correc-
tions lead to a pressure in this BH. In this context, our next step is motivated by the above
papers, where in our case we consider the origin of the quantum correction for Schwarz-
schild BH to be the non-commutativity of spacetime. For that, we add the pressure of the
BH by ad-hoc P̂dV̂ term to the first law of thermodynamics, (5.1), which can be written as
follows:

dm̂ = T̂dŜ− P̂dV̂ , (5.18)

where V̂ denotes the NC volume of deformed Schwarzschild BH, which is computed using
the same step in (5.3) (we stop at the second order in Θ).

V̂ =
4π

3
1∫ 2π

0

∫ π
0

√
ĝ22 ∗ ĝ33 dθ dφ

∫ 2π

0

∫ π

0

(
rNC

h

)3√
ĝ22 ∗ ĝ33 dθ dφ

=
4π

3
r3

h + πrhΘ2 +O(Θ4) , (5.19)
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and its conjugate, the pressure P̂

P̂ = −
(

∂m̂
∂V̂

)
= −

(
∂m̂
∂rh

)(
∂V̂
∂rh

)−1

= − 1
8πr2

h
+

Θ2

16πr4
h
+O(Θ4) , (5.20)

where 4π
3 r3

h and P = −1/(8πr2
h) are the commutative volume and pressure, respectively.
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Figure 5.12: Behavior of pressure P̂ as a function of rh.

The behavior of the NC Schwarzschild BH pressure as a function of the event horizon
rh, with different values of the NC parameter Θ, is shown in Fig. 5.12. As we see, the
non-commutativity shows a new behavior, where this geometry removes the divergence
behavior of pressure, and during the evaporation process, the pressure behavior decreases
rapidly until it reaches a new minimum value at the point

(
−0.02/Θ2, Θ

)
, then starts to

increase until it reaches a zero at rh = 0.71Θ. Moreover, that means the NC coordinates
create a new minimum behavior for the pressure, which corresponds to a transition point
associated with the interaction of this BH with NC spacetime. After this point, the effect
of the NC spacetime pressure on the BH increases with decreasing of the event horizon rh

until reach the equilibrium point at rh = 0.71Θ. Note that, for a region where the pressure
is negative and decreasing until it reaches its minimum at rh = Θ, it can be interpreted
as the pressure exerted by the BH on spacetime. This pressure is induced by the radiation
of the BH. While for the negative region between minimum rh = θ and equilibrium point
rh = 0.71Θ, the pressure is increasing, which can be interpreted as the pressure exerted by
the spacetime on BH.

5.1.4.1 Gibbs free energy

In order to analyze the phase transition in the presence of pressure in the NC spacetime,
we investigate the profile of Gibbs free energy. In this context, use the NC Helmholtz free
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energy F̂ (see Eq. (5.15)) to compute the NC Gibbs free energy Ĝ = F̂ + P̂V̂. Thus, we can
write the NC Gibbs free energy as follows:

Ĝ = m̂− T̂Ŝ + V̂P̂ . (5.21)

The influence of pressure on Gibbs free energy is shown in Fig. 5.13, where we plot the
following expression for different P̂ and T̂

Ĝ =
rh

2
+

4π

3
r3

hP̂− π r2
h T̂ + Θ2

(
1

8rh
+ π rhP̂− 5π

8
T̂
)

. (5.22)
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Figure 5.13: Behavior of Gibbs free energy Ĝ as a function of rh in NC spacetime, for different
values of pressure P̂ (left panel) and different Hawking temperature T̂ (right panel).

In this study, we are only interested in the negative pressure for the Schwarzschild BH
(see Fig. 5.12). In Fig. 5.13, we show the behavior of the NC Gibbs free energy as a function
of the event horizon rh for different values of pressure (left panel) and for different values
of temperature (right panel). As we see, the Gibbs free energy exhibits the same behavior
as the one obtained with the Helmholtz free energy shown in Fig. 5.10, i.e., there are only
two extrema for Ĝ (see left panel in Fig. 5.13) for T̂ = T̂max and −0.10 6 P̂ 6 0 in NC
geometry, and as we see above, the minimum of free energy corresponds to the stable BH
(smaller Schwarzschild BH) and the maximum one corresponds to the unstable one (larger
Schwarzschild BH), and these extremum can be obtained by solving Eq. (5.16). It is worth
noting that the two extrema of Gibbs free energy disappear when the pressure gets a value
less than (P̂ � −0.1). Furthermore, when we fix pressure at (P̂ = −0.10) and we change
the temperature in the range 0.010 < T̂ 6 0.102 < T̂max, we observe the same Gibbs free
energy behavior (see right panel in Fig. 5.13), i.e., two extrema. In this case, the depth of
the minimum and the maximum of the NC Gibbs free energy decreases with the increase
in temperature. As a consequence, a larger BH, which is an unstable one, evaporates to a
smaller and more stable one, and this agrees with the analysis of the heat capacity profile
Ĉ − rh (see Fig. 5.7), which indicates a phase transition of Schwarzschild BH in the NC
spacetime.
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Figure 5.14: Behavior of Gibbs free energy Ĝ as a function of the NC Hawking temperature T̂, for
different values of NC pressure P̂.

In Fig. 5.14, we show the behavior of Gibbs free energy as a function of the NC tempera-
ture for different values of pressure (left and right panels). As shown in the left panel, for
P̂ > 0, the Gibbs free energy is consistent with the profile "F̂− T̂" in Fig. 5.11. For negative
pressure, P̂ 6 0, we observe new behavior in which the Gibbs free energy increases rapidly
as the temperature increases, until it reaches a maximum free energy, then it starts to de-
crease until the temperature rises to a maximum T̂max. When the temperature bounces
back, the Gibbs free energy increases at a slow rate, which coincides with the previous
cases of positive pressure. P̂ > 0. It is worth noting that, when we decrease in the pressure,
i.e., P̂c < P̂ < 0, we observe a similar behavior to the swallowtail structure as in the litera-
ture; for example, see Refs. [254–256], which can be seen as a quasi-swallowtail, where in
our case we have smoother curves, and that is due to the presence of non-commutativity.
Unfortunately, the quasi-swallowtail cannot be interpreted as tow-phase coexistence, and
that is due to the absence of the intermediate BH during the evaporation process (see Fig.
5.13). However, at the critical point of pressure P̂c = −0.035, the quasi-swallowtail struc-
ture disappears and an inflection point occurs, and that corresponds to a second-order
phase transition. At this point, the Hawking-Page-like phase transition occurs during the
evaporation processes of the NC Schwarzschild BH, where that corresponds to the tran-
sition of the unstable BH (larger one) to a stable one (smaller BH), and that is consistent
with the profiles "Ĝ− rh" in Fig. 5.13 and "Ĉ− rh" in Fig. 5.8. For values below the critical
point of pressure P̂ < P̂c, the inflection point vanishes, which means there is no more
phase transition in this case, and that means there is only one phase transition that occurs
at the critical point P̂ = P̂c during the evaporation of the NC Schwarzschild BH. It is worth
noting that, in the literature, we find some papers that study the effect of some QG models
on the phase transition of BHs inside an isothermal spherical cavity with a constant of
radius R, as in Refs. [102, 103, 121, 257, 258], and these results show the exact swallowtail
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structure4. However, in this study, we show a quasi-swallowtail behavior with smoother
curves (P̂c < P̂ < 0) without using a boundary condition as the spherical cavity in the
above examples, but we find a Hawking-Page-like phase transition (P̂ = P̂c). This behavior
emerges when we study the presence of the BH pressure in the NC spacetime.
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Figure 5.15: Behavior of Gibbs free energy Ĝ as a function of NC Hawking temperature T̂, for
different values of Θ.

In Fig. 5.15, we plot the Gibbs free energy as a function of Hawking temperature T̂ in
the NC spacetime for constant pressure P̂ and different values of the NC parameter Θ. As
we see, for the values of the NC parameter below the critical value Θ < Θc, we obtain the
quasi-swallowtail structure with smoother curves. At a critical point, Θc = 0.30, we can
see that the vanish of the quasi-swallowtail structure and its replacement by an inflection
point occur, which is a behavior similar to the Hawking-Page phase transition, and that
indicates a phase transition of a larger BH (unstable) to a smaller one (stable). Then, for
Θ > Θc, this inflection point disappears. This behavior is similar to the above one, which
is presented in Fig. 5.14 (right panel), but with a difference in the order of the curves. We
observe that the NC parameter Θ plays a role similar to a thermodynamic variable of a
BH.

4 Also, when we take into account the scenario of NC Schwarzschild BH inside an isothermal spherical cavity
with radius R, we obtain an exact swallowtail behavior by just using the relation between free energy and
mass, with no need of the ad-hoc term of pressure. We investigate this scenario in detail in the next Sec.
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5.1.5 Modified first law of the BH thermodynamics

In what follows, we study the validity of the first law of BH thermodynamics in the NC
gauge theory of gravity, where we are motivated by some issues that we found above, for
example, the validity of the area law for the entropy and the equivalence of the deformed
Hawking temperature resulting from the surface horizon with the one obtained from the
first law (5.1). As in the commutative case, the NC BH also obeys the first law of thermody-
namics because it is a thermodynamic system. The temperature T̂ resulting from the first
law of thermodynamics reads

T̂ =

(
∂m̂
∂rh

)(
∂Ŝ
∂rh

)−1

=
1

4πrh
− Θ2

16πr3
h

. (5.23)

It is clear that T̂ in Eq. (5.23) calculated by the first law is not the same as T̂ in Eq. (5.7)
calculated using surface gravity, and this difference is also observed in Ref. [166]. The
possibility for solving this problem in this geometry is to use an ad-hoc term, in which the
classical form of the first law is modified by an extra factor [170].

c (rh, Θ) dm̂ = T̂dŜ , (5.24)

where c (rh, Θ) is

c (rh, Θ) = 1− 3Θ2

4r2
h

. (5.25)

If we substitute this value in Eq. (5.25) for c (rh, Θ), we recover the area law. The correct
NC correction to the entropy will be present in the next section, and for the next step, we
keep working on the NC entropy resulting from the area law (5.11) in order to modify the
first law of BH thermodynamic. In this context, we use the following decomposition of
thermodynamic properties:

m̂ = m + Θ2m(2), (5.26a)

T̂ = TH + Θ2T(2), (5.26b)

Ŝ = S + Θ2S(2). (5.26c)

where m(2), T(2), and S(2) are the NC correction terms and can be obtained by comparison
with the Eqs. (5.4), (5.7), and (5.11), respectively.

As we see above, in the NC gauge theory, the first law of BH thermodynamics is not
respected, and that also means the Samarr formula of the ADM mass is not respected in
this geometry. Starting from the classical form

1
2

m̂ = T̂H Ŝ, (5.27)
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By using the relations (5.26b) and (5.26c), we can separate the right hand of the above
relation for the commutative terms and the NC terms, and then we find

1
2

m̂ =
(

TH + Θ2T(2)
) (

S + Θ2S(2)
)

= THS + Θ2
(

THS(2) + T(2)S
)
+O(Θ4)

= THS + ΘA (5.28)

where A is a physical quantity conjugate to the NC parameter Θ, and in this case represent
the NC corrections for the first law of thermodynamics. From the above relation (5.28), we
can compute this physical quantity as follows:

ΘA = Θ2
(

THS(2) + T(2)S
)

= − 7Θ2

32rh
. (5.29)

and we have

THS =
rh

4
1
2

m̂ =
rh

4
+

Θ2

16rh
. (5.30)

It is clear that, from Eqs. (5.29) and (5.30), the terms of NC correction in both sides of Eq.
(5.28) are note equal, and that means in the NC gauge theory, the Samarr formula is note
respected.

5.2 nc bh in the grand canonical ensemble

As we saw earlier, in the NC gauge theory, the Samarr formula and the area law of entropy
are not valid. In the next step, we present a modified Samarr formula in the NC gauge
theory where we considered the non-commutativity as a thermodynamical variable in the
first law of thermodynamics, which is motivated by the previous section, where we find
that in the presence of the BH pressure, the NC parameter Θ plays the same role as a
thermodynamical variable and the similarity between the non-commutativity effect on the
temperature and the electric charge of RN BH5, also by the Refs. [245, 259].

We start now with the first law of the BH thermodynamics (5.1), which can be written by
differentiating the ADM mass (5.4), and we considered the NC parameter as geometrical
charge, in a similar form of the electric charge of RN BH, [245, 259]

dm̂ = T̂dŜ +AdΘ, (5.31)

5 We investigate this similarity in detail in this section.
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where Θ is the NC parameter and A his conjugate (which can be seen as a NC physical
potential), which is defined as:

A =

(
∂m̂
∂Θ

)
Ŝ

(5.32)

Using the expression of the ADM mass (5.4), we get

A =
Θ

4rh
. (5.33)

As we see, the NC physical potential A(r) conjugate to the NC parameter Θ is similar to
the Coulomb potential φ(r) conjugate to the electric charge Q in the RN BH.

The Samarr formula of the modified first law, (5.31), can be represented in a similar form
as in the case of the RN BH [245, 259].

m̂ = 2T̂H Ŝ + αAΘ, (5.34)

where α is a factor, using the thermodynamic quantities in the previous section, we find

m̂ = 2
(

rh

4
− 7Θ2

32rh

)
+ α

(
Θ2

4rh

)
,

=
rh

2
+
−7 + 4α

16rh
Θ2, (5.35)

By comparing the above equation with the NC ADM mass (5.4), we find that α = 9
4 , so the

modified Samarr formula in the NC gauge theory of gravity is written as follows:

m̂ = 2T̂H Ŝ + ÃΘ, (5.36)

where Ã = 9
4A, in this case the Samarr formula is respected in the NC spacetime.

According to the modified first law of thermodynamics (5.31), in the same way as the
electric charge [260], the new modified Gibbs free energy in the grand canonical ensemble
(in the presence of the NC physical potential A(rh)) is written as follows:

G̃ = m̂− T̂Ŝ−ΘA. (5.37)

The behavior of modified Gibbs G̃ free energy in the grand canonical ensemble as a
function of the deformed Hawking temperature is shown in Fig. 5.16 for different values
of the NC parameter. It is clear that we obtain a similar behavior to the Helmholtz free
energy given in the profile F̂ − T̂ (see Fig. 5.11), where the only difference is that the
free energy is lower than obtained in Fig. 5.11 in the final stage of evaporation, which
means that, when we take into account the presence of the NC physical potential A, the
BH is more stable thermodynamically compared to the one analyzed without A (see Fig.
5.11), and this potential has a significant effect of the free energy only in the final stage
of evaporation. Moreover, in the grand canonical ensemble, the NC Schwarzschild BH is
more stable thermodynamically in its final stage.
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Figure 5.16: The behaviors of the modified Gibbs G̃ free energy in the grand canonical ensemble as
a function of the NC Hawking temperature T̂.

5.2.0.1 Black hole pressure

Now, we will take into account the presence of pressure and investigate the thermal sta-
bility in the presence of A(r). Let’s now consider the presence of A(r) together with the
pressure term in the relation (5.18), so we get

dM̂ADM = T̂HdŜ +AdΘ− P̂dV̂. (5.38)

According to the above modified first law of thermodynamics in the presence of pressure
(5.38), we can define the new Gibbs free energy in the grand canonical ensemble by:

G̃P = M̂ADM − T̂H Ŝ−ΘA+ P̂V̂. (5.39)

In Fig. 5.17, we show the behavior of the modified Gibbs free energy in the grand canon-
ical ensemble as a function of the NC Hawking temperature in the presence of pressure.
As we see, a similar behavior is obtained with Ĝ− rh (see Fig. 5.14) in the absence of NC
physical potential A = 0, while in the presence of A the modified Gibbs free energy has a
lower energy compared to their absence, and that means this BH is more stable thermody-
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Figure 5.17: The behaviors of the modified Gibbs free energy in the grand canonical ensemble as a
function of the NC Hawking temperature T̂ in the presence of pressure.

namically in the presence of the NC physical potential A compared to its absence. Also, we
observe the quasi-swallowtail structure with smother curves as before (for the case A = 0).
It is worth noting that the presence of the NC physical potential shifts the inflection point
to a new critical point, P̂c = −0.06, at which the quasi-swallowtail structure disappears,
and that means a second-order phase transition. In other words, the NC physical potential
A is important for the thermal stability of the NC BH during his evaporation process.

5.2.1 Similarity between non-commutativity and the electric charge of a black hole

As we know, some of the quantum potential used as a correction to the BH geometry
affects the quantum process of Hawking radiation [100, 108–110],...etc., as well as the elec-
tric potential in the RN BH [245, 259]. In a similar way, the NC geometry also affects
this process [165, 166, 203, 247], in which this geometry plays a similar role as a thermo-
dynamical potential, and that leads to a modification in the BH thermodynamics, as we
saw above. In our previous subsection, in the grand canonical ensemble, we found an
important observation that brought our attention to the similarity in the thermodynamic
corrections between the effect of non-commutativity and the electric charge one of RN BH.
We summarized them in the following table.
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Table 5.1: Comparison of some thermodynamic properties between RN BH and NC Schwarzschild
BH in the grand canonical ensemble.

Thermodynamic properties RN BH [245] NC Schwarzschild BH

ADM mass M = r+
2 + Q2

2r+ m̂ = rh
2 + Θ2

8rh

Hawking temperature TH = 1
4πr+ −

Q2

4πr3
+

T̂ = 1
4πrh
− Θ2

4πr3
h

Potential φ = φ
r+ , A = Θ

4rh
,

The similarity between the RN BH and the NC Schwarzschild BH in the grand canonical
ensemble for some expressions of BH thermodynamic properties is shown in Table. 5.1. It
is clear that, for the Hawking temperature, we see that both expressions are identically the
same. Also, for the BH mass, we observe a similarity between the electric charge Q and
the NC parameter Θ, where the non-commutativity term is shifted by a factor of 1

4 , and
the same is true for the NC physical potential A and the electric one φ. Moreover, these
results motivate us to treat the non-commutativity as a quantum potential in a similar way
as the electric charge Q for the RN BH.

5.2.2 State equation

In which follow we present a new procedure in which we treat the NC BH as AdS RN BH
to show the similarity between the NC parameter and the electric charge. As a first step,
we define a new temperature and pressure as follows: t̃ = T̂

2 and p̃ = P̂
2 , respectively, so

the Eqs. (5.7) and (5.20) become

t̃ =
1

8πrh
− Θ2

8πr3
h

, (5.40a)

p̃ = − 1
16πr2

h
+

Θ2

32πr4
h

. (5.40b)

We multiply Eq. (5.40b) by 2rh and subtract from Eq. (5.40a) to obtain two new coupled
equations for temperature and pressure in the following table, which we compare with the
AdS and RN expressions [245].

Table 5.2: Comparison of state equation between AdS RN BH and the NC Schwarzschild BH.

Thermodynamic properties RN BH [245, 256] NC Schwarzschild BH

Temperature T = 1
4πrh

+ 2rhP− Q2

4πr3
h
, t̃ = 1

4πrh
+ 2rh p̃− 3Θ2

16πr3
h
,

Pressure P = − 1
8πr2

h
+ T

2rh
+ Q2

8πr4
h
, p̃ = − 1

8πr2
h
+ t̃

2rh
+ 3Θ2

32πr4
h
.

In Table. 5.2, we show a comparison between the NC Schwarzschild BH and the AdS
RN BH for both state equations of temperature and pressure. It is clear that our result
shows a good similarity between the expressions for both cases, and the only difference
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was observed in the third term, which allows us to make a comparison between the NC
parameter Θ and the electric charge Q.

Θ2 =
4
3

Q2. (5.41)

It is worth noting that our result is different from the one obtained in Ref. [163], and that
due to the different approach used, where we use the NC gauge theory of gravity, we agree
with Ref. [163] for the possibility that the electric charge Q is related to the NC parameter
Θ.
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Figure 5.18: Hawking temperature for AdS RN BH compared to NC Schwarzschild BH as a func-
tion of the event horizon.

The comparison of the Hawking temperature behavior between the AdS RN BH and
the NC Schwarzschild one is shown in Fig. 5.18, which is plotted as a function of rh with
a constant pressure. As we see, for a larger BH, the Hawking temperature is identical
in both cases, while for a smaller one, we observe a significant difference in the final
stage of BH evaporation, where the NC Schwarzschild BH is hotter compared to the AdS
RN (t̃max > Tmax). We observe also that the AdS RN BH evaporate and stop radiation
before the NC Schwarzschild one, and that means the remnant NC Schwarzschild BH
is smaller than the remnant AdS RN one (rNC−SBH

0 < rAdS−RNBH
0 ). Another important

observation is that in this scenario, the NC Hawking temperature of Schwarzschild BH
has a new minimum, which is not allowed in the previous profile T̂ − rh presented in Fig.
5.5, in which here the non-commutativity plays a similar role as a boundary condition,
because we treated this effect of the NC pressure as external pressure applied by the
NC spacetime on the deformed Schwarzschild BH, in a similar way to the cosmological
constant in AdS RN BH. Also, during the evaporation process of the NC Schwarzschild
BH, their temperature decreases until they reach the minimum t̃min

local , and this minimum
decreases with the increase in Θ. This behavior starts to increase during the evaporation



5.2 nc bh in the grand canonical ensemble 133

to reach the maximum t̃max, then quickly falls to zero at r0, where the BH stop radiation at
this point, and that means a remnant BH. It is worth noting that the change in temperature
behavior starts from decreasing to reach a minimum, then increases from this minimum
to reach a maximum and decreasing again, which indicates a two-phase transition of the
NC Schwarzschild BH at the minimum and maximum points.
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Figure 5.19: Hawking temperature for AdS RN BH (left panel) and NC Schwarzschild one (right
panel) as a function of the event horizon rh, with different values of pressure.

In Fig. 5.19, we show the influence of pressure on the Hawking temperature for the AdS
RN BH (left panel) and the NC Schwarzschild one (right panel) as a function of the event
horizon rh. It is clear that we observe the same behavior in both cases, and that shows an
important similarity between these two BHs, and the only difference was in the critical
points of the thermodynamical proprieties, which we derived latterly.
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Figure 5.20: Black hole pressure for AdS RN (left panel) and NC Schwarzschild (right panel) as a
function of the event horizon, with different values of temperature.

The behavior of the BH pressure for both cases of the AdS RN BH (left panel) and the
NC Schwarzschild one (right panel) as a function of the event horizon and for different
values of temperature are shown in Fig. 5.20. It is clear that, also for the pressure profile,
we observe a similarity between the NC Schwarzschild BH and the AdS RN one, and
the only difference is in the values of the critical points in each case, where an inflection
point appears for t̃ < t̃c and disappears for t̃ ≥ t̃c. As we mentioned in our previous
SubSec. 5.1.4, we interpreted the negative pressure as the pressure applying by the BH on
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his environment (spacetime for example), while the positive one represents the pressure
applying by the environment (spacetime for example) on the BH. In the AdS RN BH the
positive and negative pressure due to the positive and negative sign of the cosmological
constant [261] (Fig. 5.20 left panel), in which the cosmological constant is identified as the
pressure, see Refs. [245, 256, 261, 262]. However, in this study, we identify the deformed
geometry induced by the presence of non-commutativity as external pressure applied to
the NC Schwarzschild BH. According to discussion in SubSec. 5.1.4, we can see that, for
p̃ < p̃c (Fig. 5.19 right panel) and t̃ < t̃c (Fig. 5.20 right panel), we can analyze the pressure
behavior by comparing to the radiation activity of BH (see Fig. 5.19 right panel), where
for large BH, their pressure is always positive and close to zero pressure, and this one is
responsible for the increasing in temperature for a LBH which act as a boundary condition,
at this moment the spacetime pressure applying on this BH. Then this pressure starts
increasing until it reaches a maximum during the BH evaporation, and that is due to
the decrease in the BH radiation, which corresponds to the minimum temperature (see
temperature profile in Fig. 5.19 right panel), and that means the pressure applied by the
non-commutativity of spacetime on the BH is greater than the pressure applied by the NC
BH on the spacetime. This maximum doesn’t take a long time to start decreasing until it
reaches a minimum, and that is due to the increase in the BH radiation, which corresponds
to the maximum temperature (see Fig. 5.19 right panel), where that means the pressure
applying by BH on the spacetime is significant, but the dominant pressure in this case
is the one applied by the spacetime on this BH. It is worth noting that, for some range
of BH radius, the pressure became negative, and that means the BH pressure applying
on the spacetime is completely dominated by the one applying by the spacetime on this
BH. Moreover, when the BH stop radiation, this effect is reversed, in which the pressure
increases rapidly to infinity. At this region, a remnant BH appears (see Fig. 5.19 right
panel). As a conclusion, the profile shown in Fig. 5.20 (right panel) is the pressure applied
between BH and spacetime in the NC geometry, and the study of the non-commutativity
effect as an external pressure shows a new behavior of thermodynamic properties for the
Schwarzschild BH and shows an important similarity with the AdS RN BH.

As in the commutative case, the critical point in the NC spacetime can also be obtained
by solving the following system of equations for Θ 6= 0:

∂t̃
∂rh

= 0,
∂2 t̃
∂r2

h
= 0, (5.42)

∂ p̃
∂rh

= 0,
∂2 p̃
∂r2

h
= 0. (5.43)

We summarized in the following table the solution to the above equations.
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Table 5.3: Critical parameter of AdS RN BH and NC Schwarzschild one.

Black holes type size volume temperature pressure

AdS RN BH [245, 256] rc =
√

6Q Vc = 8
√

6πQ3 Tc =
√

6
18πQ Pc =

1
96πQ2

NC Schwarzschild BH rc =
3
√

2
2 Θ Ṽc = 9

√
2πΘ3 t̃c =

√
2

9πΘ p̃c =
1

72πΘ2

5.2.3 Phase transition and free energy

In order to investigate the phase transition of the NC Schwarzschild BH in this scenario,
we must check the signature of the heat capacity in this case. By using the new deformed
Hawking temperature given in Table. 5.2, the new heat capacity can be written as follows:

C̃ = t̃
∂Ŝ
∂t̃

= t̃

(
∂Ŝ
∂rh

)(
∂t̃
rh

)−1

,

=
2r2

hπ(4r2
h + 32r4

h p̃π − 3Θ2)

−4r2
h + 32r4

h p̃π + 9Θ2
. (5.44)

Θ = 0.5

Θ = 0.6

Θ = 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-600

-400

-200

0

200

400

600

rh

C˜

p
˜
<p
˜
c

p
˜
< p
˜
c

p
˜
= p
˜
c

p
˜
> p
˜
c

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-600

-400

-200

0

200

400

600

rh

C˜

Θ=0.6

Figure 5.21: The heat capacity behavior of the NC Schwarzschild BH as a function of the event
horizon rh, for different Θ (left panel) and for different p̃ (right panel).

The behavior of the BH heat capacity for the NC Schwarzschild one as a function of
the event horizon rh, with different values of the NC parameter Θ (left panel) and for
different values of the pressure p̃, is shown in Fig. 5.21. As we see in the left panel, for
the case p̃ < p̃c, with the presence of non-commutativity, we observe three branches in the
heat capacity behavior, in which two of them are stable and separated by a new unstable
intermediate (IBH) region, where its caused by the external pressure due to the effect of
the NC geometry, and that means the NC Schwarzschild BH has two phase transitions,
and that is consistent with the profile t̃ − rh (see right panel in Fig. 5.19), and this new
region decreases with the increasing in the NC parameter Θ. It is worth noting that our
result is similar to the ones obtained using some models of QG that study deformed BH
inside an isothermal and spherical cavity [73, 102, 103, 121, 257]. However, in our case, we
study the pressure as an external effect of the non-commutativity on the deformed BH,
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where in our previous SubSec. 5.1.4, the pressure is considered a BH pressure emerged
from the non-commutativity, but in this scenario, the pressure is treated as an external
potential of the non-commutativity, in the same way as the cosmological constant in the
AdS RN BH [245]. For the other cases of p̃ shown in the right panel, where for the case
p̃ = p̃c (right panel panel), we observe that the unstable IBH disappear and the two stable
regions (LBH and SBH) coexist at one inflexion point r3, while for p̃ > p̃c there are no
more phase transitions at this point, with one single thermally stable region (C̃ > 0).

It is clear that, for the cases of p̃ < p̃c, the NC Schwarzschild BH has only one physical
limitation point [250] as we see in the previous scenario in SubSec. 5.1.2, in which C̃ is
equal to zero at r0 (this point is in depend with the value of Θ and p̃), where the other
important points correspond to the divergence behavior of C̃ at rh = r1 and r2 (which
correspond to the maximum and the minimum temperature presented in the right panel
of Fig. 5.19), and that implies two phase transition at these points.

Table 5.4: Region, heat capacity, state, and stability of the NC Schwarzschild BH for different
branches.

Pressure Branches Region Heat capacity State Stability

p̃ < p̃c 1 rh > r2 C̃ > 0 LBH stable
2 r1 < rh < r2 C̃ < 0 IBH unstable
3 r0 < rh < r1 C̃ > 0 SBH stable

p̃ = p̃c 1 rh > r3 C̃ > 0 LBH stable
2 rh < r3 C̃ > 0 SBH stable

p̃ > p̃c 1 rh > r0 C̃ > 0 - stable

In Table. 5.4, we summarize the results of Fig. 5.21. As we see before, in this geometry
for p̃ < p̃c, we get three branches in C̃, in which the LBH and SBH have a positive heat
capacity for rh > r2 and r0 < rh < r1, respectively, and that indicates this BH is in the
equilibrium (stable) state, and these two regions are separated by a negative heat capacity
region, which corresponds to IBH located in r1 < rh < r2. Secondly, the phase transition of
NC Schwarzschild BH in this geometry is described by the divergence of heat capacity at
the critical points rh = r2 and r1, which correspond to two phase transitions, and these two
points getting closer to each other when we increase in Θ. Also, the stable stage located
in r0 < rh < r1 increases when Θ is increased, and that means the SBH takes longer to
stop the evaporation process. However, for the case p̃ = p̃c, the heat capacity has only two
branches, in which the stables LBH and SBH take longer to decay one to the other and
inversely with one phase transition, and that is due to the equilibrium stability of these
BHs, while for the last case p̃ > p̃c, there is no more phase transition and the heat capacity
is always positive, which means that there is only one single thermally stable region.
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5.2.3.1 Free energy

For in-depth details in the analysis of thermodynamic stability, we must investigate the
Helmholtz free energy in this scenario. Firstly, we need to compute the new BH mass of
this system; for that, we use the first law of thermodynamics [122, 260].

m̃ =
∫

t̃dŜ,

=
rh

2
+

4
3

πr3
h p̃ +

3
8rh

Θ2. (5.45)

The Helmholtz free energy can be expressed as follows:

F̃ = m̃− t̃Ŝ, (5.46)

where we use the above expression of the new mass (5.45), together with the entropy
(5.11) and the new temperature given in Table. 5.2. The new Helmholtz free energy in this
scenario can be expressed as follows:

F̃ =
rh

2
+

4
3

πr3
h p̃− πr2

h t̃ + Θ2
(

1
8rh
− 5π

8
t̃
)

. (5.47)
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Figure 5.22: Behaviors of the new Helmholtz free energy F̃ as a function of rh in NC spacetime, for
different new deformed Hawking temperatures t̃.

The behavior of the new Helmholtz free energy as a function of the event horizon rh

and for different values of the new temperature t̃ is shown in Fig. 5.22. It is clear that, in
the NC geometry, the new Helmholtz free energy has three extrema, where two minimum
correspond to the stable BHs (LBH and SBH) and the maximum one corresponds to the
unstable ones (IBH), and these three extrema are observed for t̃min ≤ t̃ 6 t̃max and p̃ < p̃c,
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with Θ = 0.4. The sizes of small, intermediate, and large BHs can be computed by solving
Eq. (5.16) for rh. Another important observation is that the behavior of the new Helmholtz
free energy for NC Schwarzschild BH is similar to the one obtained for the AdS RN one in
the commutative spacetime, see Ref. [245]. At this point, we confirm that the NC parameter
Θ plays a similar role to the electric charge Q of RN BH. Furthermore, for a constant
pressure (p̃ < p̃c) and varying in temperature values 0 < t̃ 6 t̃max, the new Helmholtz
free energy changes its behavior from its extremum to a minimum for t̃ ≤ t̃min, where the
depth of the minimum and the maximum of this free energy decreases with the increases
in temperature t̃. As a consequence, the unstable IBH evaporates quickly to the stable ones
(SBH or LBH), and that is consistent with the analysis of the profiles of t̃− rh (Fig. 5.19)
and C̃− rh (Fig. 5.21).
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Figure 5.23: Behaviors of the new Helmholtz free energy F̃ as a function of the new Hawking
temperature t̃ in NC spacetime, for different pressure p̃, where p̃c =

1
72πΘ2 .

The behavior of the new Helmholtz free energy of the NC Schwarzschild BH as a func-
tion of the new Hawking temperature t̃ for different values of pressure p̃ is shown in Fig.
5.23. It is clear that, in this scenario, the phase structure of NC Schwarzschild BH shows
an exact swallowtail structure for a pressure below the critical value p̃ < p̃c, which in-
dicates a two-phase coexistence state and that describes a first-order phase transition (in
this scenario, we solve the problem of the quasi-swallowtail structure that was obtained



5.2 nc bh in the grand canonical ensemble 139

above in SubSec. 5.1.4), while for p̃ = p̃c, this structure disappears and an inflection point
appears, where this point indicates a second-order phase transition. For p̃ > p̃c, this point
disappears and indicates a non-phase transition, which is consistent with the profiles of
t̃− rh (Fig. 5.19) and C̃− rh (Fig. 5.21).

5.2.3.2 Phase diagram

In order to obtain the coexistence curve, we plot the news expressions of NC pressure and
the NC Hawking temperature in the p̃ − t̃ plane. For that, we need to express the new
temperature expression given in Table. 5.2 as a function of the new pressure p̃. In the case
p̃ < p̃c, we can obtain the minimal and maximum temperature of BH. Using the condition
given by the first derivative in Eq. (5.42), together with the equation in Table 5.2, we find

t̃min/max =
2
√

p̃
π

(
−24p̃πΘ2 +

√
1− 72p̃πΘ2

)
(

1±
√

1− 72p̃πΘ2
)3/2 . (5.48)

The p̃− t̃ diagram can be obtained by drawing the above equation.
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Figure 5.24: p̃− t̃ phase diagram of the NC Schwarzschild BH. The cyan solid line and green dashed
line are the plots of t̃min and t̃max, respectively, as a function of the pressure p̃.

The behavior of the new pressure p̃ as a function of the new temperature t̃ in the p̃− t̃
phase diagram is shown in Fig. 5.24. It is clear that the curves separate the p̃ − t̃ plane
into a three-phase region that is consistent with the profile C̃− rh (see Fig. 5.21), where the
SBH is located above the solid curve as while the LBH one is below the dashed one, they
are stable thermodynamically, and in the middle region between the solid and the dashed
line, there are three solutions, which are SBH, LBH and IBH. It is worth noting that this
behavior is similar to the one obtained in the commutative spacetime for the AdS RN BH,
and that shows the similarity. At this point, the NC parameter Θ plays a similar role as
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the electric charge Q, and the non-commutativity effect can be seen in this scenario as the
effect of the cosmological constant.

5.3 black hole phase transition and isothermal cavity

In this section, we aim to investigate the thermodynamic properties of the NC Schwarz-
schild BH and their stability inside a spherical isothermal cavity, in which this cavity plays
the role of the boundary condition [70–72], which fixes the temperature at its surface and
that maintains the thermal stability of this BH. For that, we consider the NC Schwarzschild
BH inside a spherical cavity with radius R.

As we see in the previous Sec. 5.1, the area law of BH is not respected. In order to fix
this issue, we derive the NC entropy of this BH using the first law of BH thermodynamics.

ŜBH =
∫ dm̂

T̂
= πr2

h +
3πΘ2

4
log(πr2

h). (5.49)

where we use the deformed mass (5.4) and the global temperature that is emitted by the
surface horizon (5.7). It is clear that the above equation shows a logarithmic correction to
the NC entropy in this geometry, and the area law recovers when we set Θ = 0.
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Figure 5.25: The behavior of BH entropy with logarithmic correction as a function of the event
horizon rh.

In Fig. 5.25, we show the behavior of the entropy with logarithmic correction as a func-
tion of the event horizon rh for different values of the NC parameter Θ. It is clear that
the comportment obtained from NC correction to the entropy is different from the com-
portment of the entropy resulting from the deformed area law in Sec. 5.1.1. Also, the
non-commutativity increases the entropy of this BH for a larger one, while for a smaller
one, the NC entropy is smaller than the commutative one and becomes zero for a specific
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radius of BH rh, and that means, when the BH stop radiation, there is no entropy for the
remnant BH.

5.3.1 Local temperature and energy

In which follow we use the global temperature that emitted from the surface horizon of
the NC Schwarzschild BH, which is defined for open systems. However, in the case of a
closed system, that means a BH inside the cavity, and the temperature emitted by this BH
is limited by the surface of the cavity, so we need to define a new temperature for a closed
system. For that, we use the boundary condition to obtain the NC local temperature of NC
Schwarzschild BH at a finite distance R (R > rNC

h ), which is given by [70]:

T̂local =
T̂H√

ĝ00(R, Θ)
, (5.50)

By using the deformed component (3.9a) at the leading order in m and in Θ, the local
temperature is written as follows:

T̂local =
1

4rhπ
√

1− rh
R

+

 (−128r2
hR3 + 256rhR4) + r4

h

(
77− 15

√
1− rh

R

)
R

512r3
hπR3(R− rh)2

√
1− rh

R

+
16r3

h

(
−2 +

√
1− rh

R

)
R2 − 44r5

h − 128R5

512r3
hπR3(R− rh)2

√
1− rh

R

Θ2. (5.51)

It is clear that, when R → ∞, the local temperature (5.51) reduces to the NC Hawking
temperature (5.7), and the commutative expression [71] recovers when we set Θ = 0.
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Figure 5.26: The behavior of local temperature as a function of rh inside a cavity with radius R = 10.

The behavior of the NC local temperature as a function of the event horizon rh with a
fixed cavity radius R = 10 is shown in Fig. 5.26. It is clear that the NC local temperature has
two extrema, one minimum6 (T̂min

local , r2) and a maximum (T̂max
local ≈

0.03117
Θ , r1 ≈ 1.73719 Θ)

(see Fig. 5.26 (b)), where this geometry removes the divergence of the commutative case as

6 The coordinates of the minimum local temperature (T̂min
local , r2) are obtained only with the numerical solution

to this Eq. ∂T̂local
∂rh

= 0.
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in the case of open system that we studied before in previous Sec. 5.1, also in this scenario
this BH stop radiation at the same point as before r0 = rmin

h = Θ, and for the case R → ∞
the deformed Hawking temperature are analyzed in detail in SubSec. 5.1.1. As we see in
Fig. 5.26 (b), at the surface of cavity r3 = R the local temperature divergent as in the com-
mutative spacetime, and that du to the boundary condition of the isothermal cavity which
prevent the radiation to emerge outside the cavity, and during the evaporation process,
this temperature decreases until reach the minimum T̂min

local at rh = r2, and this minimum
decrease with the increasing in Θ, then this behavior starts to increase during the evapo-
ration to reach the maximum T̂max

local at r1, then quickly fall to zero at r0, which corresponds
to a remnant BH. As we motioned above, the change in temperature from minimum to
maximum indicates that the NC Schwarzschild BH inside a cavity also has two phase tran-
sitions, which hold at r2 and r1, in a similar way to the study of the non-commutativity
effect as an external pressure that is applied by the spacetime on this deformed BH, and
that shows the role of non-commutativity, which acts as a boundary condition.

Furthermore, we can obtain an estimation of the NC parameter Θ in this scenario, where
we follow the same step in SubSec. 5.1.1 and find that Θ ≈ 1.521× 10−35m ∼ lPlanck, and
this is consistent with the one obtained in Eq. (5.8).

Our next step is the local energy of the NC Schwarzschild BH, which can be obtained
by using the first law of thermodynamics (5.1) and is written as follows [122]

Êlocal =
∫ rh

r0

T̂localdŜBH, (5.52)

where r0 = m0 = Θ/2 is the minimum mass of this BH (see SubSec. 5.1.1). By using
the deformed local temperature (5.51) and the entropy (5.11), the above expression can be
computed at the second order in Θ as fellow

Êlocal = −R
√

1− rh

R
+ Θ2

66r3
hR + 96rh(|rh − R|)3/2(R)3/2 arctan(

√
|rh−R|

R )

384R5/2

+
42rh

√
1− rh

R (rh − R)R2 log(1− rh
R ) + 45r3

h

√
1− rh

R R− 42r2
h

√
1− rh

R R2

768rh

√
1− rh

R R3(R− rh)

+
88r4

h + 112rhR3 + 96R4 − 360r2
hR2

768rh

√
1− rh

R R3(R− rh)

− (rh → r0). (5.53)

and the commutative expression [118] of the local energy can recover when we set Θ = 0.

5.3.2 Local heat capacity and phase transition

In order to investigate in detail the phase transition and the thermal stability of the NC
Schwarzschild BH inside a cavity, it is necessary to analyze the behavior of its heat capacity.
In this scenario, we study the thermal stability of this BH inside a spherical cavity. In this



5.3 black hole phase transition and isothermal cavity 143

context, we use the NC local quantities in the first law of thermodynamics, (5.1). The NC
local heat capacity can be written as follows [70]

Ĉlocal =
∂Êlocal

∂T̂local
= T̂local

∂Ŝ
∂T̂local

, (5.54)

where we use the expressions of the deformed entropy (5.49) and the deformed local
temperature (5.51),
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Figure 5.27: The behavior of local heat capacity as a function of rh inside a cavity with radius
R = 10.

The behavior of the local heat capacity as a function of the event horizon for the NC
Schwarzschild BH inside an spherical isothermal cavity with constant radius R is shown
in 5.27. As we see, for Θ = 0, we recover the commutative local heat capacity of Schwarz-
schild BH inside a cavity, where this system has only two branches, and that means one
phase transition. However, in the NC case Θ 6= 0, the deformed local heat capacity has
three branches, and that means the NC Schwarzschild BH inside a cavity has a two-phase
transition as we motioned in SubSec. 5.4.1. Note that our result is consistent with some
models of QG; for example, see Refs. [73, 102, 103, 121, 257].

It is clear that the NC Schwarzschild BH inside a cavity has two physical limitation
points [250] at rh = r0 (related to the non-commutativity effect r0 = Θ) and rh = r3 (related
to the boundary condition r3 = R), in which the local heat capacity is equal to zero at these
two points, which is not allowed in the previous situation. Another important observation
is the divergence of the deformed local heat capacity, which holds at rh = r1 and r2, where
these two points correspond to the maximum and minimum temperature (see Fig. 5.26).
This implies a two-phase transition for the NC Schwarzschild BH inside a cavity at these
two points, and that is consistent with the profile T̂local − rh in Fig. 5.26.

In this geometry, Ĉlocal has three branches, which is not allowed in the commutative case,
where the equilibrium (stable) system has a positive heat capacity, and that corresponds
to the LBH and SBH, that are located in the regions for r2 < rh < r3 and r0 < rh <



144 thermodynamics proprieties of the deformed black hole

r1, respectively, and these two regions are separated by a new unstable IBH region with
negative heat capacity r1 < rh < r2 (see Table. 5.5). It is worth noting that the two critical
points rh = r2 and r1, which correspond to the divergence of deformed local heat capacity
getting closer to each other when we increase in Θ in a similar way to the profile C̃ = rh

in Fig. 5.21, also the stable stage r0 < rh < r1 with positive Ĉlocal increases with increases
in Θ, which means that the SBH takes longer to stop radiating and evaporating with a
significant value of Θ.

Table 5.5: Region, heat capacity, state, and stability of the Schwarzschild BH surrounded by a cavity
in NC/Commutative geometry for different branches.

Geometry Branches Region Heat capacity State Stability

Θ = 0 1 rh > r′1 C > 0 LBH stable
2 rh < r′1 C < 0 SBH unstable

Θ 6= 0 1 r2 < rh < r3 Ĉ > 0 LBH stable
2 r1 < rh < r2 Ĉ < 0 IBH unstable
3 r0 < rh < r1 Ĉ > 0 SBH stable

The stability and the states of each region for the NC Schwarzschild BH inside a cavity
are shown in Table. 5.5. It is clear that, in the commutative case Θ = 0, the Ĉlocal has only
two branches and one physical limitation point r3 (corresponding to the boundary condi-
tion). Moreover, these two branches have different states and stability, and that means one
phase transition point r2 separates these two states, where the LBH is thermodynamically
stable, which means this BH takes longer to evaporate, while the SBH is unstable and evap-
orates quickly. However, in this geometry Θ 6= 0, the two stable states are now separated
by a new unstable one that corresponds to IBH, and that means the two stable states SBH
and LBH take longer to evaporate compared to the IBH, which decay quickly to LBH or
SBH.

In order to investigate a detailed analysis of the stability and phase transition of the NC
Schwarzschild BH inside a cavity, it is necessary to study the deformed Helmholtz free
energy of this system. In this case, the on-shell free energy is given by the local temperature
and local energy [122].

F̂on = Êlocal − T̂local Ŝ. (5.55)

By using the Eqs. (5.49), together with (5.53) and (5.51), we can illustrate the free energy
behavior of the NC Schwarzschild BH inside a cavity with a fixed radius R.

The behavior of the local Helmholtz free energy F̂on as a function of the local temperature
T̂local for the NC Schwarzschild BH inside a cavity for different values of Θ is shown in
Fig. 5.28. It is clear that, in this geometry, the phase structure shows an exact swallowtail
structure for Θ < Θc, without including the pressure as in SubSec. 5.2.3, and that indicates
a two-phase coexistence state, while for Θ ≥ Θc, this structure despairs; see Fig. 5.28 (a).
It is worth noting that, due to the perturbative nature of this theory, the NC parameter in
natural systems is considered a small parameter Θ < 1, and that suggests one and only
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Figure 5.28: The behavior of Helmholtz free energy as a function of T̂local inside a cavity with radius
R = 10.

possibility, which is Θ < Θc, and that means in the NC spacetime this BH has only a
two-phase coexistence state as a phase transition, and that is consistent with the profiles
of T̂local − rh (Fig. 5.26) and Ĉlocal − rh (Fig. 5.27). Furthermore, in commutative spacetime,
the phase structure of Schwarzschild BH inside a cavity shows a Hawking-Page phase
transition (see Fig. 5.28 (b) for Θ = 0), which occurs at TH−P. For more detail on the
Hawking-Page phase transition, see Refs. [citation]. The stability of the BH can be checked
by its free energy, in which this BH is stable if it has less free energy and unstable if it
has high free energy. However, in the NC case Θ 6= 0, this BH has a swallow-tail phase
structure, with two inflection points located at T̂max

local and T̂min
local (see Fig. 5.28 (b)), and two

Hawking-Page phase transition points located at the root of the free energy F̂on = 0, at
(T̂NC−1

H−P , T̂NC−2
H−P ), and that correspond to a two-phase coexistence state. As we observe in Fig.

5.28 (b), the location of the SBH and the LBH are respectively (0, T̂min
local) and (T̂local > T̂max

local),
while the three states of this BH are located in (T̂min

local , T̂max
local), which is similar to the one

obtained using GUP [257]. From the Fig. 5.28 (b), we find only one Hawking-Page critical
point in commutative spacetime (Θ = 0) at TH−P, while for the NC geometry we find
two Hawking-Page critical points at T̂NC−1

H−P and T̂NC−2
H−P , and this result is consistent with

the one obtained by RG in extended phase space [121], whereas one and three Hawking-
Page critical points were observed in other models of QG such as the Refs. [75, 102, 103].
In the case of temperature located at 0 < T̂NC−1

H−P , the free energy F̂on of the LBH and
the IBH are grater than the SBH (F̂I

on > F̂L
on > F̂S

on) and that mean the stable LBH and
unstable IBH decay into a stable SBH, while for the case of temperature located between
the two Hawking-Page critical points (T̂NC−1

H−P < T̂local < T̂NC−2
H−P ), the stable SBH and the

unstable IBH decay into a stable LBH, because its free energy is lower than the one of
SBH and IBH (F̂I

on > F̂S
on > F̂L

on), and its the same case for the temperature located at
T̂NC−2

H−P < T̂local < T̂max
local . As we observe from Fig. 5.27 and 5.28, the unstable IBH decay

quickly to the stable ones (SBH or LBH), and that means this state of BH cannot survive
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for a long time in this geometry. It is worth noting that the NC gauge theory of gravity
shows a good agreement with some models of QG as [73, 75, 102, 103, 118, 121, 257], and
that indicates the impact of this geometry to describe the quantum effect of gravity, with
a good prediction of a minimal length at Planck scale Θ.

5.4 quantum tunneling in nc spacetime

In order to investigate the tunneling process, the authors in Refs. [76, 82, 83] suggest
that it is important to use stationary coordinates. These stationary coordinates exhibit no
singularity at the event horizon, which is unlike the Schwarzschild coordinates, where that
ensures the conservation of energy in the radiation spectrum derivative. To facilitate this,
we rewrite the NC Schwarzschild BH7 in the Painlevé-Gullstrand form [76, 82, 83, 98]. The
NC line element (3.8) for a radial motion becomes

dŝ2 = −ĝ00(r, Θ)dt2 + 2ĥ(r, Θ)dtdr + dr2 + ĝ22(r, Θ)dθ2 + ĝ33(r, Θ)dφ2, (5.56)

where
ĥ(r, Θ) =

√
ĝ00(r, Θ)(ĝ11(r, Θ)−1 − 1) (5.57)

In the semi-classical tunneling of particles, the tunneling rat Γ̂ is related to the imaginary
part of the action [76, 82, 83], and is given by

Γ ∼ e−ImŜ, (5.58)

where Ŝ is the tunneling action of particles in the NC curved spacetime and is given by

Ŝ =
∫

pµdxµ, (5.59)

where pµ = ĝµν
dxν

dτ is the conjugate momentum and τ is the affine parameter. Our interest
is the tunneling of massless particles with radial motion (the angular momentum in this
case is zero) and in the equatorial plan θ = π/2. The imaginary part of this action Ŝ is
reduced to

ImŜ = Im
∫
(ptdt + prdr) = Im

∫ r f

ri

prdr,

= Im
∫ r f

ri

∫ pr

0
dp′rdr. (5.60)

As we see, the first term of integration does not contribute to the calculation of the imag-
inary part of the action because it is real. Let’s turn now to the Hamiltonian equation,
where the system’s Hamiltonian is represented as H = m−ω′. This allows us to write

ṙ =
dH
dpr

=
d(m−ω′)

dpr
, (5.61)

7 In this section we use the deformed metric given in Sec. 3.2, with a = Θ and b = 0, to insure the diagonal
form.
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where ṙ = dr
dt . Incorporating all these considerations into Eq. (5.60) and that allows us to

remove the momentum from this expression, then we find

ImŜ = Im
∫ m−ω

m

∫ r f

ri

d(m−ω)

ṙ
dr. (5.62)

Let’s assume that the particle tunneling across the event horizon follows a radial motion
within the equatorial plane. Therefore, the radial null geodesic can be obtained by using
the following expression ĝµνUµUν = 0

dr
dt

= −ĝ01 +
√

ĝ2
01 + ĝ00. (5.63)

By sitting the above equation into Eq. (5.62), we obtain

ImŜ = Im
∫ m−ω

m

∫ r f

ri

d(m−ω)

−ĝ01 +
√

ĝ2
01 + ĝ00

dr. (5.64)

where ĝ01 = ĥ and dH = d(m−ω) = −dω. After rearranging our expression, we obtain

ImŜ = Im
∫ ω

0
(−dω)

∫ r f

ri

dr√
ĝ00 ĝ11

[
1−

√
1− 1

ĝ11

] . (5.65)

The above expression exhibits one singular pole at the NC event horizon r = rNC
h . To

compute this integral, we use the contour deformation technique around the pole by using
the residue theorem. To ensure the conservation of the Boltzmann factor8 Γ ∼ e−2ImS ∼
e−βω, we follow the same steps to evaluate the above integral over ω as in Refs. [96, 97]

ImŜ = π
∫ ω

0

(
4m +

3Θ2

2m

)
dω = πω

(
4m +

3Θ2

2m

)
. (5.66)

The NC tunneling rate from the NC Schwarzschild BH is given by

Γ̂ ∼ exp
[
−2πω

(
4m +

3Θ2

2m

)]
. (5.67)

It is clear that, when we set Θ = 0, we recover the commutative expression [76, 83].
The impact of the non-commutativity on the tunneling rate of particles from the NC

Schwarzschild BH is shown in Fig. 5.29. As we see, the non-commutativity has a minor
influence on the tunneling rate Γ̂ for emitting particles with frequency ω in the range
ω ∈ [0.04, 0.15]. In this range, the tunneling rate Γ̂ decreases with the increase in the NC
parameter Θ. For other values of ω or for smaller Θ, the non-commutativity effect on Γ̂
became negligible.

In Fig. 5.30, we plot the behavior of the tunneling rate Γ̂ of particles from NC Schwarz-
schild BH as a function of BH mass m for different values of the NC parameter Θ (right
panel) and for different values of energy ω (left panel). As we see in the left panel, for a

8 In the approximation of lower frequency ω � m.
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Figure 5.29: The behavior of tunneling rate BH as a function of the emitting particle energy ω, with
m = 1.
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Figure 5.30: The behavior of tunneling rate as a function of BH mass m, for different values of
energy ω (right panel), and for different values of the NC parameter Θ (left panel).

massive BH the tunneling rate of particles is small in both cases for commutative and NC
one, and that due to the strength of gravity, this rate starts to increase during the evapora-
tion process, which means the gravity of SBH is not as strong as before (as in the massive
case). It is clear that, in the NC geometry, we observe new behavior, in which the tunneling
rate of particles for the case of zero mass m = 0 is also zero Γ̂ = 0, and this behavior is not
allowed in the commutative case Θ = 0, and that means there are no tunneling particles
with constant energy ω from an BH with zero mass, and that is more logical, and that is
due to the presence of non-commutativity. Furthermore, in this geometry, the tunneling
rate of particles increases during the evaporation process until it reaches a new maximum
Γ̂max at the critical mass mcrit, then starts to decrease until it reaches zero at m = 0, and
this maximum tunneling rate decreases with the increase of Θ, which indicates that the
non-commutativity enhances the gravitational field. Also in the right panel, we see the
same observation: when we increase the values of the energy frequencies ω of the particle
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tunneling in the NC spacetime, the tunneling rate of these particles decreases, and that
means the energy of the particle is bigger, which implies a smaller tunneling rate. For
more detail on the influence of these parameters m, ω, and Θ on the tunneling rate Γ, see
Fig. 5.31.

m = 0.2 m = 0.5 m = 1.0

Θ = 0.0 Θ = 0.2 Θ = 0.4

ω = 0.05 ω = 0.10 ω = 0.15

Figure 5.31: Behaviors of the tunneling rate distribution as a function of the parameters m, ω, and
Θ. (raw1) as a function of ω and Θ at different masses m = 0.2, 0.5, 1.0. (raw2) as a
function of m and ω at different NC parameters Θ = 0.0, 0.2, 0.04. (raw3) as a function
of m and Θ at different frequencies ω = 0.05, 0.10, 0.15.

5.4.1 NC correction to the Hawking temperature

It is worth noting that, according to Planck’s law, particles with frequency ω should be
emitted at a rate described by Γ ∼ exp [−ω/T]. Consequently, the deformed temperature
of this BH, as indicated by Eq. (5.67), and at leading order in Θ, can be written as follows:

T̂H =
1

2π
(

4m + 3Θ2

2m

) ≈ TH

(
1− 3Θ2

2r2
h

)
. (5.68)

Note that, when Θ = 0, the commutative Hawking temperature recovers (1.46). It is impor-
tant to highlight that the above expression is obviously the same expression obtained using
the surface gravity in Eq. (5.6) with a particular case a = Θ and b = 0, and that means the
equivalence between the quantum tunneling process and the thermodynamic approach is
preserved during the BH evaporation, despite the non-commutativity of spacetime.
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Figure 5.32: The behavior of NC Hawking temperature as a function of rh (in the case a = Θ and
b = 0).

The behavior of the NC Hawking temperature9 as a function of the event horizon rh is
shown in Fig. 5.32. It is clear that we have the same behavior as in Figs. 5.2, 5.3 and 5.5,
concerning the removal of the Hawking temperature divergence, leading the BH to attain
a new maximum T̂max

H ≈ 0.025
Θ , at the critical size rcrit

h ≈ 2.121 Θ before turning to a zero at
rh = 1.225 Θ, at this point the BH stop radiation.

By following the same steps in SubSec. 5.1.1, we can obtain an estimation of the NC
parameter Θ by using the back-reaction coordinates (T̂max

H ≈ 0.025
Θ , rcrit

h ≈ 2.121 Θ). In this
case, the NC parameter can be estimated as follows:

Θ ≈ 1.854× 10−35m ∼ lPlanck. (5.69)

Our results show again that the NC property of spacetime is situated at the Planck scale.
This suggests that estimating the NC parameter Θ through thermal phenomena (by using
the temperature behavior) provides a more accurate determination, and that is due to
the direct relation of this phenomenon to the event horizon of the BH, where this last is
affected by the non-commutativity. This direct relation provides a better estimation of Θ,
and that means in the presence of a strong gravitational field or that the closer we are to
the event horizon, the more QG effects emerge at a large scale.

5.4.2 Logarithmic corrections to the entropy in NC spacetime

In this subsection, we will extract the NC correction entropy arising from the tunneling
process, in the case of large frequency ω, while ensuring the conservation of energy. To
facilitate this, we use the definition (5.64) and integrate the relation (5.66) over the NC

9 For the case a = Θ and b = 0.
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quantity d(m̂−ω), and the element of integration in the NC case can be written as follows:

dH = d(m−ω)→ dĤ =

(
1− 3Θ2

32(m−ω)2

)
d(m−ω) (5.70)

Inserting this relation into Eq. (5.66) and integrating this relation from the initial stat m to
the final one m− ω, we preserve the conservation of energy. According to Refs. [76, 83],
the BH mass in (5.66) became m−ω, and in our case, we use the above deformed element
of integravtion, (5.70), then we obtain

ImŜ = −π
∫ m−ω

m

(
4(m−ω) +

3Θ2

2(m−ω)

)
d(m−ω) + π

∫ m−ω

m

(
3Θ2

8(m−ω)

)
d(m−ω),

= −π

(
2(m−ω)2 +

9Θ2

4
log (m−ω)− 4(m)2 − 9Θ2

4
log (m)

)
. (5.71)

This leads us to the usual relationship between the difference in entropy and the tunneling
rate [76, 82, 83].

Γ̂ ∼ e−2ImŜ = e∆ŜBH . (5.72)

where ∆ŜBH = ŜBH(m−ω)− ŜBH(m) is the difference of Bekenstein-Hawking entropy for
the NC Schwarzschild BH.

ŜBH = 4πm2 +
9πΘ2

8
log(4πm2). (5.73)

In the NC gauge theory and also the quantum tunneling process, the relationship between
the BH area and entropy is not conserved, and the NC term introduces a logarithmic
correction to this entropy that is consistent with the above one obtained using the NC first
law of BH thermodynamic (5.49), with a difference in the factor 3 and that due to the
choice of the NC matrix.

It is worth noting that this result can be written as a similar outcome in ST and LQG (at
the leading order in α) [92]:

ŜBH =
A
4
+ α log(

A
4
). (5.74)

where A is the commutative Schwarzschild BH area (1.47), and α is a constant, depending
on specific theory. In LQG, α takes a negative value, α = − 1

2 [263, 264], while in ST,
this constant α is a 4-D central charge, which depends on the number of fields and can
assume both negative and positive values [265]. Furthermore, this logarithmic correction
is also observed in other theories, as examples in GUP and MDR [120, 208]. In Ref. [208],
a significant result was established where the author found a connection between the
prefactor of the logarithmic correction and the spacetime dimension.

It is worth noting that, when we use the NC gauge theory of gravity, this constant α

consistently takes a positive value and is related to the NC parameter by α = 9πΘ2

8 . Now,
if we use our previous result for the NC parameter values (5.69), we can relate α to the
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Planck length as α ∼ 9π
4 l2

Planck. This indicates that in this theory of non-commutativity, the
coefficient α of the logarithmic correction to the entropy represents a quantum area located
at the Planck level, suggesting that spacetime is quantized at the Planck scale due to the
NC property of spacetime.

In order to express the NC tunneling rate (5.72) as the one presented in Ref. [92], we
need to write the Eq. (5.71), as follows:

∆Ŝ = π

(
4(m−ω)2 +

9Θ2

8
ln
(
4π(m−ω)2)− 4(m)2 − 9Θ2

8
ln
(
4πm2)) ,

= −8πmω
(

1− ω

2m

)
+

9πΘ2

8
ln
(

1− ω

m

)2
. (5.75)

Inserting this equation inside Eq. (5.72), we get

Γ̂ = e∆ŜBH = e−π
(
−8mω(1− ω

2m )+
9Θ2

4 ln(1− ω
m )

2)

=
(

1− ω

m

) 9π
4 Θ2

e−8πmω(1− ω
2m ). (5.76)

We use our results in Eq. (5.69), Θ ' lPlanck. The above equation can be expressed in the
following form:

Γ̂ = e∆ŜBH =
(

1− ω

m

) 9π
4 l2

Planck
e−8πmω(1− ω

2m ). (5.77)

It is clear that, in our above expression, we have an exponential term with a correction
factor. The exponential term corresponds to the commutative case with non-thermal radi-
ation [92], while the correction factor in this theory depends on the Planck length. This
correction factor introduces a quantum correction emergent from the non-commutativity
of spacetime. In the semiclassical limit, when we set lPlanck = 0, our expression reduces to
the commutative one [92].

5.4.3 Correlations

Now, let us examine the correlation between two successively emitted particles with differ-
ent modes ω within the framework of NC gauge theory. In particular, we will focus on the
context of non-thermal radiation, starting with the first massless quantum emission with
frequency ω1. In this case, the emission rate (5.77) is written in the following form:

ln Γ̂ω1 =
9π

4
Θ2 ln

(
1− ω1

m

)
− 8πmω1

(
1− ω1

2m

)
. (5.78)

According to Refs. [266–268], the second quantum emission, characterized by energy ω2,
is independent of the first one, ω1. This independence is valid even in the presence of QG
corrections [269], and its emission rate is given by

ln Γ̂ω2 =
9π

4
Θ2 ln

(
1− ω2

m

)
− 8πmω2

(
1− ω2

2m

)
. (5.79)
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The emission rate Γ for two quantum emissions occurring simultaneously, with energies
ω1 and ω2, is given by

ln Γ̂ω1+ω2 =
9π

4
Θ2 ln

(
1− (ω1 + ω2)

m

)
− 8πm(ω1 + ω2)

(
1− (ω1 + ω2)

2m

)
. (5.80)

From the above expressions, we can calculate the statistical correlation between these
events [95, 266, 269] as follows:

χ̂(ω1 + ω2; ω1, ω2) = ln
(

Γ̂ω1+ω2

Γ̂ω1 Γ̂ω2

)
= 8πω1ω2 +

9π

4
Θ2 ln

(
m(m− (ω1 + ω2))

(m−ω1)(m−ω2)

)
(5.81)

Remarkably, the correlation function χ̂ remains non-zero in the context of NC gauge the-
ory, as well as in the commutative case10 [95, 266–268]. This implies that, in the NC geome-
try, the different radiation modes ω during BH evaporation exhibit correlations with each
other (χ̂ 6= 0). Moreover, the presence of NC correction in this expression reduces the sta-
tistical correlations between Hawking radiations11. Furthermore, the non-zero correlation
between successively emitted massless quantum particles suggests that information can
emerge within the Hawking radiation, thus addressing the information loss paradox. In
this NC framework, information is preserved within this remnant BH, and the geometry
reduces these correlations, enabling information to surface from the event horizon, akin to
“hidden messengers in Hawking radiation” [266].
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Figure 5.33: The behavior of the correlation function as a function of the NC parameter Θ for
different ω.

10 Note that, when we set Θ = 0, we recover the commutative expression [95, 266–268].
11 In this thesis we correct our issue in our published paper [173], where we look only to the sign of the NC

correction term in Eq. (5.81), without taking into account the sign resulting from the logarithm term, which is
always negative in this case.
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In Fig. 5.33, we present the behavior of the statistical correlation function as a function
of the NC parameter Θ for different ω. As we see in the left panel, the non-commutativity
reduces the correlation function for the different values of energy, and the increases in
energy lead to an increase in the correlation between Hawking radiations.

5.4.4 NC correction to the density number of particles emitted

In this step, we aim to investigate the NC effect on the density number of particles that are
emitted by the NC Schwarzschild BH in the scenario of pure thermal radiation. According
to Refs. [270–272], the density number of particles n̂ emitted is directly related to the
tunneling rate [98, 273]. In our case of thermal radiation, the density number from the
tunneling rate (5.67) can be written as follows [270]

n̂ =
Γ̂

1− Γ̂
=

1

e8πmω
(

1+ 3Θ2

8m2

)
− 1

, (5.82)

Note that the obtained expression takes the same form as the Planck distribution of the
black body radiation and is related to the NC parameter. Also, when we set Θ = 0, we
recover the commutative expression of the density number of particles emitted [53].

n̂ =
1

e8πmω − 1
. (5.83)
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Figure 5.34: The behavior of the density number of particles emitted n̂ from a NC Schwarzschild
BH as a function of particle frequency ω (left panel) with m = 1 and different NC
parameter Θ. (right panel) The density number of particles emitted n̂ as a function of
the NC parameter Θ with m = 1 and different frequency ω.

The behavior of the density number of particles emitted from the NC Schwarzschild
BH as a function of particle frequency ω is shown in Fig. 5.34 (left panel). The main
observation in this figure is the non-commutativity effect, which results in a decrease in
the density number of particles emitted as Θ increases. and that means non-commutativity
plays a similar role as potential well in quantum mechanics. In the right panel of Fig. 5.34,
we show how the non-commutativity decreases the density number of particles emitted,
which is the same effect observed in the commutative case, in which the increase in the BH
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mass m leads to a decrease in the density number of particle n̂ (see left panel of Fig. 5.35).
This indicates that the NC parameter Θ plays a similar role as the BH mass m, effectively
increasing the gravitational field of the BH and explaining the decrease in the density
number of particles that escape from the BH.
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Figure 5.35: The commutative Θ = 0 behavior of n̂ as a function of the BH mass m (left panel),
with different frequency ω. (right panel) The density number of particles emitted n̂ as
a function of the BH mass m in the NC spacetime Θ = 0.2 and different frequency ω.

In Fig. 5.35, we present the behavior of both commutative and NC cases of the density
number of particles emitted as a function of the BH mass m and for different frequencies
ω. As we see, in the commutative case, the density of particles emitted increases during
the evaporation of the BH and diverges when the mass of this BH reaches zero, while this
issue can be fixed when we pass to the NC geometry.

For that, we use a particular case in which we use the Boltzmann factor with the NC
temperature in the leading order in Θ given by Eq. (5.68), then we set that inside the
density number of particles given by Eq. (5.82), to obtain the right panel of Fig. 5.35. It is
clear that in the NC spacetime, this geometry removes the divergence behavior, in which
the density number of particles increases during the evaporation of this BH until it reaches
a maximum, then quickly falls to zero at mmin, and that corresponds to the remnant mass.
At this point, the BH stop radiation, and that indicates that there is no more emitted
particle at this point. This result is consistent with the temperature profile T̂H − rh in Fig.
5.32, and that means the non-commutativity solves the issue of the commutative case.

5.4.5 Bekenstein entropy loss and number of particles emitted

In this subsection, we will investigate the effect of this geometry on the Bekenstein entropy
loss and the total number of particles emitted from NC Schwarzschild BH in the non-
thermal case, where we follow the same steps as in other models of QG [104, 274].

The Bekenstein entropy loss of the Schwarzschild BH per emitted quanta12, is given by
[275]

dS
dN

=
dS/dt
dN/dt

= 8πmh̄〈ω〉, (5.84)

12 In the natural unit system (G = h̄ = c = 1).
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where N is the total number of particles and the average energy 〈E〉 is given by [276]

〈E〉 = h̄〈ω〉 = π4

30ζ(3)
TH, (5.85)

In the presence of non-commutativity, the ordinary temperature TH must change to the
deformed one given by (5.68) in the above equation. In this case, by using Eq. (5.68), the
Eq. (5.84) can be written as follows:

dS
dN

=
dS/dt
dN/dt

=
π4

30ζ(3)

(
1− 3Θ2

8m2

)
, (5.86)

According to the deformed entropy given by Eq. (5.73), the NC Bekenstein entropy loss
of the NC Schwarzschild BH per emitted quanta is given by

dŜ
dN

=
dŜ/dt
dN/dt

=
dS/dt
dN/dt

(
1 +

9πΘ2

8
1
S

)
, (5.87)

By substituting the Eq. (5.86) inside the above one and keeping only the leading order in
Θ, we find

dŜ
dN

=
π4

30ζ(3)

(
1− 3Θ2

32m2

)
, (5.88)

It is clear that, in the commutative limit Θ → 0, we recover the commutative expression
[275].
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Figure 5.36: The behavior of the Bekenstein entropy loss of the NC Schwarzschild BH per emitted
quanta as a function of the BH mass m and for a different NC parameter.

In Fig. 5.36, we present the variation of Bekenstein entropy loss of the NC Schwarz-
schild BH per emitted quanta dŜ

dN as a function of the BH mass m and for a different NC
parameter Θ. As we see in the commutative case, this quantity is constant during the BH
evaporation process and takes a value of about 2.7 [276]. It is clear that, in the presence
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of non-commutativity, we observe a new behavior, in which the effect of this geometry is
negligible for a LBH (supermassive one), then dŜ

dN start decreases during the evaporation
process (with the decrease of mass m) until reach a zero at mmin, which corresponds to
a remnant mass. It is worth noting that this behavior is also observed in other models of
QG, such as RG [104], and that shows a similarity between these models of QG and the
non-commutativity, as we see before in the previous Sec. 5.3.

Now, we investigate the non-commutativity effect on the total number of particles emit-
ted by this BH; for that, we use the mass element Ref. [274], and in the NC spacetime can
be written as follows:

dm̂ = 〈E〉dN̂, (5.89)

Using the definition of average energy given in Eq. (5.85) together with Eq. (5.68), we get13

dm
(

1− 3Θ2

32m2

)
=

π4TH

30ζ(3)

(
1− 3Θ2

8m2

)
dN̂, (5.90)

In the leading order in Θ, the element of total number of particles dN̂ is written as

dN̂ =
30ζ(3)8πm

π4

(
1 +

9Θ2

32m2

)
dm, (5.91)

Integrating this equation, we find the NC total number of particles emitted in the non-
thermal radiation.

N̂ =
30ζ(3)

π4

[
4πm2 +

9πΘ2

8
log
(
4πm2)] , (5.92)

and in terms of entropy, we have

N̂ =
30ζ(3)

π4

[
S +

9πΘ2

8
log (S)

]
, (5.93)

In Fig. 5.37, we show the behavior of the total number of particles emitted by the NC
Schwarzschild BH as a function of mass m. As we see, this behavior is similar to the one
obtained for entropy, and that is due to the use of non-thermal radiation to compute the
total number of particles emitted in the presence of non-commutativity. It is clear that the
effect of this geometry in this case is different from the one obtained in the above case
of pure thermal radiation, in which the non-commutativity always decreases the density
number of particles emitted, while in the non-thermal case we observe two scenarios where
this geometry increases the total number of particles emitted for a LBH (with a mass of
m > 0.282) and increases with Θ. In the second scenario, for a SBH (with mass m ≤ 0.82),
this effect is reversible to a reduction of the total number of particles emitted and decreases
when we increase in Θ, until we reach zero at the remnant mass mmin. Moreover, this
geometry shows again the remnant mass, which corresponds to the BH that evaporated

13 The mass of this BH can be obtained using m̂ = rNC
h /2, where the event horizon in this case is given by Eq.

(3.11) with a = Θ and b = 0.
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Figure 5.37: The behavior of the NC total number of particles emitted by the NC Schwarzschild BH
as a function of the BH mass m and for different NC parameter.

before, and that is not allowed in the commutative case. However, this calculation can also
be used for the expression of entropy resulting from the area law given by Eq. (5.11).

5.5 black hole evaporation process in nc spacetime

According to our previous sections on the thermodynamics of the NC Schwarzschild BH,
we find that this geometry affected the thermodynamic properties of this BH. However, in
this section, we discuss the non-commutativity effect on other quantities such as luminos-
ity, energy emission rate, and lifetime of NC Schwarzschild BH14.

5.5.1 Luminosity of NC SBH radiation

In the black body case, the luminosity L related to the temperature T, and is given by the
Stefan-Boltzmann black body formula:

L = σSB A T4, (5.94)

where A is the commutative BH area given by Eq. (1.47) and σSB =
π2 k4

B
60h̄3c4 is the Stephan-

Boltzmann constant. In the presence of non-commutativity, the luminosity of the NC
Schwarzschild BH can be written as follows:

L̂ = σSB ANC
h T̂4, (5.95)

14 In this section, we use thermodynamic properties that are obtained in Sec. 5.1, where we use the conditions
a = 0 and b = Θ.
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where T̂ is the NC global temperature that is emitted by the total surface horizon15 and is
given by Eq. (5.7), and the NC area of this BH is given by Eq. (5.10).
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Figure 5.38: The behaviors of the NC Schwarzschild BH Luminosity L̂ as a function of rh.

The behavior of the NC luminosity L̂ of the NC Schwarzschild BH as a function of
the event horizon rh for different NC parameter Θ is shown in Fig. 5.38. As we see, in the
commutative case (Θ = 0), the luminosity behavior represents a divergence at rh = 0, while
in the presence of non-commutativity this divergent is removed and a new maximum can
be reached by the BH during the evaporation process, then turning to zero at rmin

h = Θ (at
this point this BH stop evaporation process), and this maximum in the luminosity behavior
is caused by the maximum activity of the BH radiation (see Fig. 5.5). It is worth noting
that our result obtained in Fig. 5.38 is consistent with the one obtained by the black body
radiation, where the quantization of the spacetime via the non-commutativity removes the
divergence behavior just like the quantization of the spectral radiation in the black body
radiation, so the quantum effect is also observed on the BH radiation in the NC geometry.

5.5.2 Energy emission rate

The deformed energy emission rate of the NC Schwarzschild BH in the NC spacetime is
written in the same form as in the commutative one [277, 278], and is given by

d2Ê
dωdt

=
2π2σ̂limω3

eω/T̂ − 1
, (5.96)

where ω is the particle frequency, T̂ describes the NC Hawking temperature (5.7) and σlim

is the greybody factor. This factor can be expressed as the surface of the unstable photon

15 It is always possible to investigate a partial luminosity in this geometry by using the partial temperature given
by Eq. (5.6), analyzing the possible cases for a given a end b, and showing the difference of luminosity from
one direction to the other.
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sphere σlim ≈ πR2
shadow [277]. In this case, the above energy emission rate can be written as

follows:
d2Ê

dωdt
=

2π3R2
shadow

eω/T̂ − 1
ω3, (5.97)
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Figure 5.39: The behaviors of energy emission rate of the NC Schwarzschild BH as a function of
frequency ω (left panel) and as a function of rh (right panel).

In the right panel of Fig. 5.39, we present the NC energy emission rate as a function of
the frequency ω with a different Θ. As we see, in both commutative and NC cases, we
observe the same general behavior concerning the gaussian distribution pick of energy
emission rate for the NC Schwarzschild BH. It is clear that this geometry decreases the
peak and shifts it to the low frequency with the increase in the NC parameter Θ, which
means the evaporation process of Schwarzschild BH is slow in the NC spacetime.

For the right panel of Fig. 5.39, we show the variation of the energy emission rate as a
function of the event horizon rh. It is clear that, in the NC spacetime, we observe a remnant
BH, in which the energy emission rate goes to zero at a minimum size rmin

h = Θ. We show
again that this geometry predicts a remnant BH in the Planck size.

5.5.3 NC effect on the black hole Lifetime

In our next step, we compute the NC lifetime of this BH by using its luminosity L̂ = dÊ
dt

given in Eq. (5.95), and that allows us to write the NC energy decay rate as follows:

dÊ
dt

= −dm̂
dt

= σSB ANC
h T̂4

H, (5.98)

The "−" sign comes from the loss of mass during the evaporation process. Using the NC
expressions of area (5.10) and temperature (5.7), and we keep only the second order in Θ,
then we get

dm
dt

= − σSB

256 m2 π3 +
25 σSBΘ2

8192 m4 π3 +O(Θ4). (5.99)

The variation of the NC evaporation rate as a function of the BH mass m with different
NC parameters Θ is shown in Fig. 5.40. As we see, a new minimum appears in this geom-
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Figure 5.40: The behaviors of NC evaporation rate as a function of mass m with different values of
Θ.

etry, in which the non-commutativity removes the commutative divergence behavior at
m→ 0, and this geometry allows the evaporation rate to reach zero at a minimum mass of
mmin, which indicates the end of the evaporation process of this BH. In particular, a similar
result can be found in the novel GUP framework introduced in Ref. [116], where the BH is
completely evaporated ( dm

dt = 0 at m = 0), contrary to our case, in which the evaporation
rate goes to zero at mmin and that means the deformed BH stop evaporation before m = 0
and that leads to a remnant BH.

In order to express the NC lifetime of the Schwarzschild BH, we separated the variables
of Eq. (5.99), and we found

σSB

∫ t

0
dt =

∫ mi

m
dm
(
256 m2π3 + 200 π3Θ2) . (5.100)

Integrate the above expression with the boundary condition (t = 0, m = mi) → (t, m)

(where mi is the initial mass and m is the current one.), and after some calculation, the
lifetime of the NC Schwarzschild BH is written as follows:

t̂ =
(

256 π3

3σSB
(m3

i −m3) +
200 π3Θ2

σSB
(mi −m)

)
. (5.101)

Note that when we set Θ = 0, we recover the commutative expression. It is worth noting
that the non-commutativity increases the lifetime of the NC Schwarzschild BH, and that
means the evaporation process passes slowly in this geometry. A similar observation can
be seen in Ref. [165]. Moreover, in the final stage of BH evaporation, we aim to examine
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two possible scenarios. The first is concerning the complete evaporation (m f = 0). For that,
the BH lifetime in this case is given as follows:

t̂(1)f =

(
256 π3

3σSB
m3

i +
200 π3Θ2

σSB
mi

)
, (5.102)

It is clear that the non-commutativity increases the lifetime of a complete evaporation
process, and according to our previous findings about the remnant BH, this scenario is not
acceptable. However, in the second scenario, concerning the presence of a remnant mass
m̂0 = Θ/2 (see SubSec. 5.1.1) in the final stage of evaporation, this geometry prevents
Schwarzschild BH from the complete evaporation (see the profile T̂ − rh in Figs. 5.2, 5.3,
5.4, and 5.5). The BH lifetime in this case is written as follows:

t̂(2)f =

(
256 π3

3σSB
m3

i +

(
200 miπ

3 − 332 π3

3

)
Θ2

σSB

)
, (5.103)

Remarkably, the above expression shows that, in this scenario, the BH lifetime is smaller
than the first one (5.102), which means this BH stopped radiation before the above case,
and that led to a remnant BH, and that is consistent with our findings in the previous
sections.

Table 5.6: Evaporation time for two possible scenarios of the NC Schwarzschild BH, with different
Θ, and remnant mass m̂0 = Θ/2.

Scenarios Θ = 0 Θ = 0.2 Θ = 0.4 Θ = 0.6

m̂ = 0, t̂(1)f (×107) 1.6085 1.6100 1.61453 1.62207

m̂ = m̂0, t̂(2)f (×107) / 1.60999 1.61439 1.62162

The two possible scenarios of the NC Schwarzschild BH evaporation expressed by Eqs.
(5.102) and (5.103) are presented in Table. 5.6, for a different value of the NC parameter
Θ. It is clear that, in the second scenario, in the presence of a remnant mass (5.103), the
BH stop radiation before the first scenario given by Eq. (5.102). Another remark is that this
geometry increases the lifetime of the NC Schwarzschild BH with the increase in Θ.

Let’s check the behavior of mass decay as a function of the BH lifetime in the NC
spacetime. For that, we solve Eq. (5.101) for m. The general solution in the NC geometry is
supposed to be in the following form:

m(t) = A(t) + B(t)Θ2. (5.104)

where A(t) = (256m3
i π3−3σSBt)

1/3

22/34π
is the commutative solution to Eq. (5.101) with Θ = 0, and

B(t) is the NC correction term and is a function of the BH lifetime t. For that, substituting
the Eq. (5.104) inside (5.101) and solving it for B(t), we find

m(t) =
(
256m3

i π3 − 3σSBt
)1/3

22/34π
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−
24π

(
−8miπ + 21/3 (256m3

i π3 − 3σSBt
)1/3

)
22/34

(
256m3

i π3 − 3σSBt
)2/3 Θ2 +O(Θ2). (5.105)

It is clear that, for the commutative Schwarzschild BH with initial mass mi = 10, the BH
mass vanishes m → 0 as t → 256mi3π3

3σSB
' 1.608× 107, and that is a necessary finite time for

a complete evaporation, while for the NC Schwarzschild BH stop evaporation before the
time t̂ < t = 1.608× 107, with a minimum m̂min.
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Figure 5.41: The behaviors of the NC Schwarzschild BH mass during the evaporation process m̂ as
a function of BH lifetime t, with initial mass mi = 10.

The evolution of NC Schwarzschild BH mass m̂ during the evaporation process as a
function of the BH lifetime t for various values of Θ is shown in Fig. 5.41.

It is clear that the commutative Schwarzschild BH (Θ = 0) is completely evaporated
at tevap = 1.6085× 107, while for the NC case (Θ 6= 0), this geometry prevents this BH
from a complete evaporation and leads to a new minimum mass mmin (remnant mass) at a
finite time t̂NC

evap < tevap for a given Θ, in which at this time the NC Schwarzschild BH stop
radiation and that leads to a remnant BH with a minimum mass m̂0, where these results
are consistent with our previous sections.

Table 5.7: Evaporation time t̂ of NC Schwarzschild BH in the scenario of remnant BH with its
minimum mass, for different values of Θ

Θ Minimum mass Evaporation time t̂ f (×107)

0.0 − 1.60849

0.2 1.24623 1.60747

0.4 1.94265 1.60474

0.6 2.50714 1.60023
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The influence of the NC parameter Θ on the lifetime t̂ f and the minimum mass m̂0 of
the remnant BH in the NC spacetime are present in Table. 5.7. As we see, this remnant
mass increases with the increase in Θ, and that allows BH to stop radiation before the
previous case with a small remnant mass and a small Θ, and that leads to a decrease in
the evaporation time with increases in Θ.

5.5.3.1 Evaporation process of NC Schwarzschild BH

The evaporation process of BH is an important direct consequence of Hawking radiation.
Unfortunately, in the semi-classical approach, the end of the evaporation process is un-
known, and the final stage of commutative Schwarzschild BH is still a question in the
absence of a QG theory. One of the explanations for the divergence behavior of radiation
in the final stage of evaporation is that when the BH lost all its mass m → 0, the Schwarz-
schild BH finished with a quantum explosion [279, 280], which is a catastrophe scenario
for any BHs. In order to know exactly what happened in the final stage of Schwarzschild
BH at the quantum level, we need QG theory, to solve this mystery.

In this work, where we use the NC geometry as a candidate of QG theory to study
the BH physics as the thermodynamic phenomena of Schwarzschild BH (see previous
sections.), we show important results that emerged from this theory. Non-commutativity
reveals the mystery of This geometry reveals the mystery of the final stage in the evapo-
ration process, which ends in a peaceful manner. According to our findings in the previ-
ous sections, the non-commutativity presents a new scenario of evaporation in which this
geometry prevents the BH from a complete evaporation and predicts a remnant BH in the
finale stage of Schwarzschild BH evaporation (see Fig. 5.42).
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Figure 5.42: A schematic picture of the formation and evaporation process of BH in the NC space-
time.

Moreover, this remnant has a minimum mass m̂0 and area A0
Θ with zero entropy and

temperature (for more detail see Sec. 5.1), as we show it in the schematic picture in Fig.
5.42. The prediction of this remnant is expected to be in the Planck scale, and that is due
to our estimation of the NC parameter Θ in different situations and scenarios, which show
again that the non-commutativity of spacetime appears at the Planck scale.



C O N C L U S I O N S

In this thesis, we study various implications of non-commutativity on the BH physics in
order to investigate the effects of QG theory. In this context, we use a NC gauge theory of
gravity to describe a quantum correction to the BH metric by using a general form of the
tetrad fields. Then we u use this deformed metric to investigate the geometrical properties,
the motion, and the thermal radiation in the presence of non-commutativity. This work
is divided into three principal parts, of which the first is devoted to some geometrical
properties of the deformed BH. The second part is devoted to study the motion of test
particles around the deformed BH. The third part is devoted to the thermal properties and
evaporation process of the deformed BH.

In Chap. 3, we study some geometrical properties of the deformed BH that was obtained
in the NC gauge theory of gravity, in different cases of NC matrix. Then we show that this
geometry breaks the spherical symmetry of the metric in the specific case of NC matrix.
As an application to our general form of deformed metric, we choose the Schwarzschild
BH and the RN one, where this geometry predicts a singularity at a finite radius rNC

singularity

for both cases also this geometry increases the even horizon rNC
h > rh. Then we present

briefly, the formation of the NC Schwarzschild BH from a collapsing matter.
In Chap. 4, we study the motion of three types of particles in two types of NC spacetime

(presented in Chap. 3). In the first case, we choose the NC Schwarzschild spacetime as
a background to investigate the motion of massive and massless particles and the effect
of this geometry. As a first step, we investigate the non-commutative effect on the radial
motion of both massive and massless test particles. We observe that the massive and mass-
less test particles take an infinite time to reach the NC singularity in the affine parameter
framework, and that’s not allowed in the commutative case. For the coordinate time, these
particles take an infinite time to reach the NC event horizon. Secondly, we study the circu-
lar motion and its stability in this geometry for both massive and massless test particles,
where the motion of these particles in this geometry presents new types of motion near the
NC event horizon and it’s SCO, which is not allowed in the commutative Schwarzschild
spacetime. For the massive particles, we obtain multiple SCO separated by an unstable
region. Then, for the massless one, these orbits represent a two-photon sphere; the inner
one (the new SCO) is stable, while the outer one is unstable, as in the commutative case.
Therefore, we support our findings by investigating in detail the Lyapunov exponent to es-
tablish the instability of orbits for both massive and massless test particles. Then, we show
the effect of the non-commutativity on the shadow of the NC Schwarzschild BH, where
this geometry increases the shadow radius in a similar case to the mass, and that indicates
that the non-commutativity of spacetime increases the gravitational field of BH.

In the second case of this chapter, we use NC RN BH as a background to investigate the
motion of an uncharged/charged massive test particle. In this pursuit, the analysis of the
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effective potential for uncharged/charged massive test particles shows a new SCO near the
event horizon, in which the non-commutativity shifts the inner minimum of the effective
potential to the outside of the NC event horizon, and again, in this geometry, we have a
multiple SCO as in the NC Schwarzschild spacetime. Then we solve the geodesic equation
for both uncharged and charged test particles and also for the Schwarzschild limit.

Finally, we investigate in detail the NC effect on the four classical tests of GR, concerning
the periastron advance, red-shift, deflection of light, and time delay. We find that the lower
bound of the NC parameter Θphy falls within the range of (10−31m − 10−36m), which is
close to the Planck scale.

In Chap. 5, we investigate in detail the non-commutativity effect on the thermody-
namic properties and thermal stability of NC Schwarzschild BH in a different scenario.
As a first step, we study the classical BH thermodynamic of NC Schwarzschild one, in
which we obtain the thermal quantities in the presence of non-commutativity. Moreover,
the estimation of Θ through thermal phenomena is found in the order of Planck scale
Θphy ≈ 1.523× 10−35 m ∼ lPlanck. Then, we check the thermal stability of this BH, where
the results show a phase transition of the unstable Schwarzschild LBH to a stable SBH
one. Also, we show a new scenario of evaporation in this geometry, which is summarized
below.

• The evaporation of a Schwarzschild BH starts from the equator and goes up to the
poles.

• The non-commutativity prevents the Schwarzschild BH from complete evaporation,
and then we obtain a quantum object with an area of AΘ

0 with a minimum mass of
m̂0 = 0.5 lp and a radius of rmin

h = lp, interpreted as a microscopic remnant BH and
it’s thermodynamically stable.

• Also, this remnant can preserve the information, which solves the problem of lost
information.

However, the phase transition of the NC Schwarzschild BH in the presence of pressure
shows a Hawking-Page-like phase transition at the critical value P̂c, and that means a
second-order phase transition in this geometry. Then, we establish a similarity between
NC Schwarzschild BH and the AdS RN, representing in a direct mathematical relation
between the Θ and the electric charge Q, Θ2 = 4

3 Q2. Also, we present a new treatment of
non-commutativity, which is treated as an external pressure applied to this BH. We observe
a new scenario of evaporation in which a new unstable intermediate region (IBH) appears
between two stable ones (SBH and LBH), and we get two-coexistence phase transition
similarly to the AdS RN BH. Moreover, in this scenario, we find that Θ plays the same role
as the electric charge Q, and the non-commutativity effect applies to the Schwarzschild
BH is similar to the cosmological constant effect.

Secondly, we check the stability and the phase transition of the NC Schwarzschild BH
inside a thermal spherical cavity. The analysis thermal phenomena inside this cavity shows
that, in the presence of non-commutativity, this BH has a two-phase transition of second
order, in a similar way to the previous scenario. Then we obtain again a two-coexistence
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phase transition, similar to the other models of QG theories, and that indicates the impact
of this geometry to describe the quantum effect of gravity at large scale.

Then,we examine the NC effect on the Hawking radiation by extending the semi-
classical approach of the quantum tunneling process to the NC geometry, where we are
exploring two distinct scenarios. In the first scenario, we examin the case of pure thermal
radiation from the NC Schwarzschild BH, where in this geometry we have established
an equivalence between the quantum tunneling process and the thermodynamic one. Our
analysis of the non-commutativity impact on the tunneling rate of these massless particles
shows a similar role for a potential well in quantum mechanics. In the second scenario,
we take into account the conservation of energy and the context of large-frequency emis-
sions. The results are consistent with an underlying unitary quantum theory in which the
tunneling rate is related to changes in Bekenstein entropy. Our findings of the NC cor-
rection to the entropy of NC Schwarzschild BH have unveiled a logarithmic correction.
This correction is consistent with other QG theories. Also,we investigate the correlation
between successively emitted particles with different frequencies ω in this geometry for a
non-thermal emission. The results have highlighted the presence of correlations between
successive emissions, with non-commutativity playing a role in reducing these correlations
within Hawking radiation. The non-commutativity not only preserves information within
the remnant BH but also enables information to emerge from the event horizon, coding
in Hawking radiation. Then, we check the effect of non-commutativity on the number of
particles emitted from the NC Schwarzschild BH in two cases from both thermal and non-
thermal radiation. Firstly, we obtain the NC correction to the density number of particles
using pure thermal radiation at a lower frequency approximation, and our results confirm
the effect of non-commutativity, leading to a decrease in the density number of particles.
Secondly, we use the non-thermal radiation to express the NC to the total number of par-
ticles emitted by this BH, where we use the Bekenstein entropy loss in the presence of this
geometry, which is found related to the NC entropy.

In the final step, we analyze some phenomenological aspects of the NC SBH and its evap-
oration process. As an application, we choose the luminosity, and our results show a simi-
lar behavior to the black body radiation, in which the non-commutativity removes the di-
vergence behavior of the Schwarzschild BH luminosity in a similar way as the quantization
of the black body radiation, and that confirms the role of the non-commutativity concern-
ing the quantization of spacetime in GR. Then we show the effect of non-commutativity on
the energy emission rate and lifetime, where we find that, in this geometry, the Schwarz-
schild BH evaporates slowly and the non-commutativity prevents this BH from the com-
plete evaporation, and that leads to a remnant BH as we motioned above.

The use of the NC gauge theory of gravity allows us to obtain good results on the bound
of the NC parameter. This theory needs more attention, and it may be beneficial to describe
QG in the future.
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outlook and future work

Although the good results and predictions of NC gauge theory of gravity, it is still not
a final theory of QG, more work and development for other application is needed. One
of our aims is to reduce the complexity of calculations and preserve all the physical re-
sults,find another method to solve the deformed Einstein’s equations in the presence of
non-commutativity in the leading order of corrections, and compare them to this work.
Also, we believe that, the application of this approach on rotating BH can lead to bright
results and predict a new scenario about the evolution of this BH. All of that is still just a
theory without any validation by experiments, and that is the dream of every theoretical
physicist.
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A
S P H E R I C A L S Y M M E T R I C M E T R I C I N N C G A U G E
T H E O RY

The general spherical symmetric of the the Schwarzschild-type metric is given by the fol-
lowing line element

ds2 = −A2(r) dt2 + B2(r) dr2 + r2 dθ2 + r2 sinθ2 dφ2 (A.1)

and the non-zero Christoffel symbols:

Γt
t r =Γt

r t =
A′(r)
A(r)

, Γr
t t =

A(r)A′(r)
B(r)2 , Γr

r r =
B′(r)
B(r)

, Γr
θ θ =

r
B(r)2 , Γr

φ φ = − rsinθ2

B(r)2 ,

Γθ
r θ = Γθ

θ r =
1
r

, Γθ
φ φ = −sinθ cosθ, Γφ

r φ = Γφ
φ r =

1
r

, Γφ
φ θ = Γφ

θ φ = cotθ. (A.2)

and the general tetrad fields of the metric (A.1) is written as:

ea
µ =


A(r) 0 0 0

0 B(r) sinθ cosφ r cosθ cosφ −r sinθ sinφ

0 B(r) sinθ sinφ r cosθ sinφ r sinθ cosφ

0 B(r) cosθ −r sinθ 0

 (A.3)

and the inverse tetrad fields:

ea µ =


− 1

A(r) 0 0 0

0 sinθ cosφ
B(r)

cosθ cosφ
r − sinθ sinφ

r

0 sinθ sinφ
B(r)

cosθ sinφ
r sin θ cosφ

0 cosθ
B(r) − sinθ

r 0

 (A.4)

a.1 spin connection

The commutative spin-connections components can be computed using the definition:

ωa b
µ = −ebν∂µea

ν + ebνΓλ
µ νea

λ, (A.5)
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using this definition and the Eqs. (A.2), (A.3) and (A.4), we can computed the non-zero
spin-connections components.

ω0 1
t = − e1ν∂te0

ν︸ ︷︷ ︸
=0

+e1νΓλ
t νe0

λ,

= e1 t︸︷︷︸
=0

Γr
t te

0
r + e1 rΓt

t re0
t ,

=
A′(r)
B(r)

sinθ cosφ. (A.6)

ω0 3
t = − e3ν∂te0

ν︸ ︷︷ ︸
=0

+e3νΓλ
t νe0

λ,

= e3 rΓt
t re0

t ,

=
A′(r)
B(r)

cosθ. (A.7)

ω1 3
φ = −e3ν∂φe1

ν + e3νΓλ
φ νe1

λ,

= −e3r∂φe1
r − e3θ∂φe1

θ − e3φ︸︷︷︸
=0

∂φe1
φ

+ e3θΓφ
φ θe1

φ + e3rΓφ
φ re1

φ + e3φΓθ
φ φe1

θ

+ e3φΓr
φ φe1

r ,

=

(
1− 1

B(r)

)
sinθ cosθ sinφ. (A.8)

ω1 3
θ = −e3ν∂θe1

ν + e1νΓλ
θ νe1

λ,

= −e3r∂θe1
r − e3θ∂θe1

θ − e3φ︸︷︷︸
=0

∂θe1
φ

+ e3rΓθ
θ re1

θ + e3θΓr
θ θe1

r + e3φ︸︷︷︸
=0

Γφ
θ φe1

φ,

= −
(

1− 1
B(r)

)
cosφ. (A.9)

ω0 2
t = − e2ν∂te0

ν︸ ︷︷ ︸
=0

+e2νΓλ
t νe0

λ,

= e2 rΓt
t re0

t ,

=
A′(r)
B(r)

sinθ sinφ. (A.10)

ω1 2
φ = −e2ν∂φe1

ν + e2νΓλ
φ νe1

λ,

= −e2r∂φe1
r − e2θ∂φe1

θ − e2φ∂φe1
φ

+ e2φΓθ
φ φe1

θ + e2θΓφ
φ θe1

φ + e2rΓφ
φ re1

φ

+ e2φΓr
φ φe1

r ,

=

(
1− 1

B(r)

)
sinθ2. (A.11)

ω2 3
φ = −e3ν∂φe2

ν + e3νΓλ
φ νe2

λ,

− e3r∂φe2
r − e3θ∂φe2

θ − e3φ︸︷︷︸
=0

∂φe2
φ

+ e3θΓφ
φ θe2

φ + e3rΓφ
φ re2

φ + e3φΓθ
φ φe2

θ

+ e3φΓr
φ φe2

r ,

= −
(

1− 1
B(r)

)
sinθ cosθ cosφ.

(A.12)

ω2 3
θ = −e3ν∂θe2

ν + e3νΓλ
θ νe2

λ,

= −e3r∂θe2
r − e3θ∂θe2

θ − e3φ︸︷︷︸
=0

∂θe2
φ

+ e3rΓθ
θ re2

θ + e3θΓr
θ θe2

r + e3φ︸︷︷︸
=0

Γφ
θ φe2

φ,

= −
(

1− 1
B(r)

)
sinφ. (A.13)

a.2 curvature tensor

In the gauge theory of gravity the curvature tensor Fa b
µ ν is given by (1.55) in the limit of

λ→ 0:

Fab
µν = ∂µωab

ν − ∂νωab
µ +

(
ωac

µ ωdb
ν −ωac

ν ωdb
µ

)
ηcd (A.14)

using the above components of the spin-connections, we compute the non-zero compo-
nents of curvature tensor
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For [ab] = [01]:

F01
t r = ∂tω

01
r︸ ︷︷ ︸

=0

−∂rω01
t +

ω0c
t ωd1

r︸︷︷︸
=0

− ω0c
r︸︷︷︸

=0

ωd1
t

 ηcd,

= −∂rω01
t = −

(
A′′(r)
B(r)

− A′(r)B′(r)
B(r)2

)
sinθ cosφ. (A.15)

F01
t θ = ∂tω

01
θ︸ ︷︷ ︸

=0

−∂θω01
t +

ω02
t ω21

θ︸︷︷︸
=0

+ω03
t ω31

θ − ω02
θ︸︷︷︸

=0

ω21
t −ω03

θ ω31
t︸︷︷︸

=0

 ,

= −∂θω01
t + ω03

t ω31
θ , (A.16)

= −A′(r)
B(r)2 cosθ cosφ. (A.17)

F01
t φ = ∂tω

01
φ︸ ︷︷ ︸

=0

−∂φω01
t +

ω02
t ω21

φ + ω03
t ω31

φ − ω02
φ︸︷︷︸

=0

ω21
t −ω03

φ ω31
t︸︷︷︸

=0

 ,

= −∂φω01
t + ω02

t ω21
φ + ω03

t ω31
φ ,

=
A′(r)
B(r)2 sinθ sinφ. (A.18)

[ab] = [02]:

F02
t r = ∂tω

02
r︸ ︷︷ ︸

=0

−∂rω02
t +

ω0c
t ωd2

r︸︷︷︸
=0

− ω0c
r︸︷︷︸

=0

ωd2
t

 ηcd,

= −∂rω02
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(
A′′(r)
B(r)

− A′(r)B′(r)
B(r)2

)
sinθ sinφ. (A.19)

F02
t θ = ∂tω

02
θ︸ ︷︷ ︸

=0

−∂θω02
t +

ω01
t ω12

θ︸︷︷︸
=0

+ω03
t ω32

θ − ω01
θ︸︷︷︸

=0

ω12
t −ω03

θ ω32
t︸︷︷︸

=0

 ,

= −∂θω01
t + ω03

t ω32
θ , (A.20)

= −A′(r)
B(r)2 cosθ sinφ. (A.21)

F02
t φ = ∂tω

02
φ︸ ︷︷ ︸

=0

−∂φω02
t +

ω01
t ω12

φ + ω03
t ω32

φ − ω01
φ︸︷︷︸

=0

ω12
t −ω03

φ ω32
t︸︷︷︸

=0

 ,

= −∂φω02
t + ω01

t ω12
φ + ω03

t ω32
φ ,

=
A′(r)
B(r)2 sinθ cosφ. (A.22)

[ab] = [03]:

F03
t r = ∂tω

03
r︸ ︷︷ ︸

=0

−∂rω03
t +

ω0c
t ωd3

r︸︷︷︸
=0

− ω0c
r︸︷︷︸

=0

ωd2
t

 ηcd,
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= −∂rω03
t = −

(
A′′(r)
B(r)

− A′(r)B′(r)
B(r)2

)
cosθ. (A.23)

F03
t θ = ∂tω

03
θ︸ ︷︷ ︸

=0

−∂θω03
t +

ω01
t ω13

θ + ω02
t ω23

θ −ω01
θ ω13

t︸ ︷︷ ︸
=0

−ω02
θ ω23

t︸ ︷︷ ︸
=0

 ,

= −∂θω03
t + ω02

t ω23
θ + ω02

t ω23
θ ,

=
A′(r)
B(r)2 sinθ. (A.24)

[ab] = [12]:

F12
r φ = ∂rω12

φ − ∂φω12
r︸ ︷︷ ︸

=0

+

ω1c
r︸︷︷︸

=0

ωd2
φ − ω1c

r︸︷︷︸
=0

ωd2
φ

 ηcd,

= ∂rω12
φ =

B′(r)
B(r)2 sinθ2. (A.25)

F12
θ φ = ∂θω12

φ − ∂φω12
θ︸ ︷︷ ︸

=0

+

ω10
θ ω02

φ︸ ︷︷ ︸
=0

+ω13
θ ω32

φ −ω10
θ ω02

φ︸ ︷︷ ︸
=0

−ω13
θ ω32

φ

 ,

= ∂θω12
φ + ω13

θ ω32
φ −ω13

θ ω32
φ ,

=

(
1− 1

B(r)2

)
sinθ cosθ. (A.26)

[ab] = [13]:

F13
r θ = ∂rω13

θ − ∂θω13
r︸ ︷︷ ︸

=0

+

ω1c
r︸︷︷︸

=0

ωd3
θ − ω1c

r︸︷︷︸
=0

ωd3
θ

 ηcd,

= ∂rω13
φ = − B′(r)

B(r)2 cosφ. (A.27)

F13
r φ = ∂rω13

φ − ∂φω13
r︸ ︷︷ ︸

=0

+

ω1c
r︸︷︷︸

=0

ωd3
φ − ω1c

r︸︷︷︸
=0

ωd3
φ

 ηcd,

= ∂rω13
φ =

B′(r)
B(r)2 sinθ cosθ sinφ. (A.28)

F13
θ φ = ∂θω13

φ − ∂φω13
θ +

ω10
θ ω03

φ︸ ︷︷ ︸
=0

+ω12
θ ω23

φ︸ ︷︷ ︸
=0

−ω10
θ ω03

φ︸ ︷︷ ︸
=0

−ω12
θ ω23

φ

 ,

= ∂θω13
φ − ∂φω13

θ −ω12
θ ω23

φ ,

= −
(

1− 1
B(r)2

)
sinθ2 sinφ. (A.29)
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[ab] = [23]:

F23
r θ = ∂rω23

θ − ∂θω23
r︸ ︷︷ ︸

=0

+

ω2c
r︸︷︷︸

=0

ωd3
θ − ω2c

r︸︷︷︸
=0

ωd3
θ

 ηcd,

= ∂rω23
φ = − B′(r)

B(r)2 sinφ. (A.30)

F23
r φ = ∂rω23

φ − ∂φω23
r︸ ︷︷ ︸

=0

+

ω2c
r︸︷︷︸

=0

ωd3
φ − ω2c

r︸︷︷︸
=0

ωd3
φ

 ηcd,

= ∂rω23
φ = − B′(r)

B(r)2 sinθ cosθ cosφ. (A.31)

F23
θ φ = ∂θω23

φ − ∂φω23
θ +

ω20
θ ω03

φ︸ ︷︷ ︸
=0

+ω21
θ ω13

φ︸ ︷︷ ︸
=0

−ω20
θ ω03

φ︸ ︷︷ ︸
=0

−ω21
θ ω13

φ

 ,

= ∂θω23
φ − ∂φω23

θ −ω21
θ ω13

φ ,

=

(
1− 1

B(r)2

)
sinθ2 cosφ. (A.32)

a.3 non-commutative tetrad fields

The Non-commutative corrections to the tetrad fields (A.3) can be calculated using the SW
maps, which is described in the power of Θ up to the second-order by (2.32)

êa
µ(x, Θ) = ea

µ(x)− iΘνρea
µνρ(x) + ΘνρΘλτea

µνρλτ(x) +O(Θ3). (A.33)

the first and the second order correction is written as Eq. (2.34) and (2.33)

ea
µνρ =

1
4
[ωac

ν ∂ρed
µ + (∂ρωac

µ + Fac
ρµ)e

d
ν]ηcd (A.34)

ea
µνρλτ =

1
32

[
2{Fτν, Fµρ}abec

λ −ωab
λ (DρFcd

τµ + ∂ρFcd
τµ)e

m
ν ηdm

−{ων, (DρFτν + ∂ρFτν)}abec
λ − ∂τ{ων, (∂ρωµ + Fρµ)}abec

λ

−ωab
λ

(
ωcd

ν ∂ρem
µ +

(
∂ρωcd

µ + Fcd
ρµ

)
em

ν

)
ηdm + 2∂νωab

λ ∂ρ∂τec
λ

−2∂ρ

(
∂τωab

µ + Fab
τµ

)
∂νec

λ − {ων, (∂ρωλ + Fρλ)}ab∂τec
µ

−
(
∂τωµ + Fτµ

) (
ωcd

ν ∂ρem
λ +

(
(∂ρωλ + Fρλ)

)
em

ν

)
ηdm

]
ηcb (A.35)

where

{α, β}ab =
(

αacβdb + βacαdb
)

ηcd, [α, β]ab =
(

αacβdb − βacαdb
)

ηcd (A.36)

DµFab
ρσ = ∂µFab

ρσ+
(

ωac
µ Fdb

ρσ + ωbc
µ Fda

ρσ

)
ηcd (A.37)



174 appendices

In our calculation we take only space-space noncommutativity, so that the parameters
Θµν:

Θµν =


0 0 0 0

0 0 0 Θ

0 0 0 0

0 −Θ 0 0

 , µ, ν = 0, 1, 2, 3. (A.38)

The non-zero components of the deformed tetrad field are computed as follows:
For ê0

t :

ê0
t = e0

t − iΘνρe0
tνρ + ΘνρΘλτe0

tνρλτ +O(Θ3),

= e0
t − i

[
Θrφe0

trφ + Θφre0
tφr

]
+
[
ΘrφΘrφe0

trφrφ + ΘrφΘφre0
trφφr

+ΘφrΘrφe0
tφrrφ + ΘφrΘφre0

tφrφr

]
+O(Θ3),

= e0
t − iΘ

 e0
trφ︸︷︷︸
=0

− e0
tφr︸︷︷︸
=0

+ Θ2
[
e0

trφrφ − e0
trφφr − e0

tφrrφ + e0
tφrφr

]
+O(Θ3). (A.39)

the non-zero components of the second order are:

e0
trφrφ =

1
32

(
2
{

Fφr, Ftφ
}ab ec

r − 2∂φ

(
∂φω0b

t + F0b
φt

)
∂rec

r −
(

∂φω0b
t + F0b

φt

)
Fcd

φr em
ν ηdm

)
ηbc,

=
1
32

(
A′(r)B′(r)(−3 + 2B(r)2 + B(r))

B(r)3

)
sin2θ, (A.40a)

the same steps to computing the other components, then we find:

e0
tφrφr =

1
16

(
8rA′(r)B′(r)2 − B(r)(8rB′(r)A′′(r) + A′′(r)(B′(r) + 2rB′′(r)))

B(r)4

+
B(r)2(A′(r)B′(r) + A′′(r) + 2rA′′′(r))− B(r)3A′′(r)

B(r)4

)
sin2θ, (A.40b)

e0
tφrrφ =

1
32

(
A′(r)B′(r)(−3 + 2B(r)2 + B(r))− 2B(r)A′′(r)(1 + B(r))

B(r)3

)
sin2θ, (A.40c)

e0
trφφr =

1
8

(
A′(r)B′(r)− B(r)A′′(r)

B(r)2

)
sin2θ. (A.40d)

Substituting now the above component into the Eq. (A.39), we obtain the first deformed
tetrad field

ê0
t = A(r) +

Θ2sin2θ

32B4(r)
{
−4B(r)(4rB′(r)A′′(r) + A′(r)(2B′(r) + rB′′(r))) + 16rA′(r)B′2(r)

+B3(r)(A′(r)B′(r) + 4A′′(r)) + B2(r)(−3A′(r)B′(r) + 4(A′′(r) + rA′′′(r)))
}

, (A.41a)
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In the similar way, we find the other non-zero deformed components

ê1
1 = B(r)sinθcosφ +

iΘ
4

B′(r)sinθsinφ +
Θ2

64B3(r)
{

8(2B′(r)− B(r)B′′(r))sin2θ

+B3(r)B′′(r)(3 + cos2θ) + B(r)(B′2(r)− B(r)B′′(r))(1 + 3cos2θ)
}

sinθcosφ, (A.41b)

ê2
1 = B(r)sinθsinφ− iΘ

4
B′(r)sinθcosφ +

Θ2

64B3(r)
{

8(2B′(r)− B(r)B′′(r))sin2θ

+B3(r)B′′(r)(3 + cos2θ) + B(r)(B′2(r)− B(r)B′′(r))(1 + 3cos2θ)
}

sinθsinφ, (A.41c)

ê3
1 =

Θ2sin2θ

32B3(r)
{
(8− 3B(r))B′2(r)− B(r)B′′(r)(4 + (−3 + B(r))B(r))

}
cosθ

+ B(r)cosθ, (A.41d)

ê1
2 = rcosθcosφ− iΘ

4
[B(r)− 1] cosθsinφ +

Θ2

32B4(r)

{
B4(r)B′(r)(−3 + cos2θ)

+sin2θ
[
16rB′2(r)− B2(r)(B′(r)− 4rB′′(r))− 4B(r)(2B′(r) + 2rB′2(r) + rB′′(r))

]
−1

2
B3(r)B′(r)(−9 + 5cos2θ)

}
cosθcosφ, (A.41e)

ê2
2 = rcosθsinφ +

iΘ
4

[B(r)− 1] cosθcosφ +
Θ2

32B4(r)

{
B4(r)B′(r)(−3 + cos(2θ))

+sin2θ
[
16rB′2(r)− B2(r)(B′(r)− 4rB′′(r))− 4B(r)(2B′(r) + 2rB′2(r) + rB′′(r))

]
−1

2
B3(r)B′(r)(−9 + 5cos(2θ))

}
cosθsinφ, (A.41f)

ê3
2 = −rsinθ +

Θ2sinθ

64B4(r)
{

sin2θ
[
4B(r)B′(r)(4 + B3(r))− 32rB′2(r) + 8rB(r)B′′(r)

]
+B2(r)B′(r)(5− B(r) + (−1 + 5B(r))cos(2θ)) + 8rB(r)(B(r)B′′(r)− 2B′2(r))cos2θ

}
,

(A.41g)

ê1
3 = −rsinθsinφ− iΘ

4

[
(B(r)− 1) cos2θ − ((1− 1

B(r)
) + 2

B′(r)
B2(r)

r)sin2θ

]
sinθcosφ

+
Θ2

32B4(r)
{
[+3B2(r)B′(r) + 36rB′2(r) + 8rB2(r)B′′(r)− B(r)(7B′(r) + 16rB′2(r)

+12rB′′(r))]sin2θ + 2B3(r)B′(r)− 2B4(r)B′(r)cos2θ
}
(−sinθsinφ), (A.41h)

ê2
3 = rsinθcosφ +

iΘ
4

[
(B(r)− 1) cos2θ − ((1− 1

B(r)
) + 2

B′(r)
B2(r)

r)sin2θ

]
(−sinθsinφ)

+
Θ2

32B4(r)
{
[+3B2(r)B′(r) + 36rB′2(r) + 8rB2(r)B′′(r)− B(r)(7B′(r) + 16rB′2(r)

+12rB′′(r))]sin2θ + 2B3(r)B′(r)− 2B4(r)B′(r)cos2θ
}
(sinθcosφ), (A.41i)

ê3
3 =

iΘ
4B(r)2

[
(−B(r) + B(r)3 + 2rB′(r))

]
sin2θcosθ. (A.41j)





B
E N E R G Y A N D A N G U L A R M O M E N T U M O F T H E
C I R C U L A R O R B I T A R O U N D N C R N B H

b.1 uncharged massive test particle

We provide here the full expressions for the energy and the angular momentum of circular
orbits for a uncharged massive test particle, in the second-order in Θ:

E2
c '

(Q2 − 2mrc + r2
c )

2

r2
c (2Q2 − 3mrc + r2

c )
+

 X (rc) + G(rc)
√

1− 2m
rc

+ Q2

rc

32r6
c (2Q2 − 3mrc + r2

c )
2
√

1− 2m
rc

+ Q2

rc

Θ2 +O(Θ4),

(B.1a)

L2
c '

(mr3
c −Q2r2

c )

2Q2 − 3mrc + r2
c
−

 W(rc) + V(rc)
√

1− 2m
rc

+ Q2

r2
c

32r2
cV2

0 (Q2 + rc(−2m + rc))
√

1− 2m
rc

+ Q2

r2
c

Θ2 +O(Θ4).

(B.1b)

with

X (rc) = 44Q8 − 259mQ6rc + 537m2Q4r2
c + 102Q6r2

c − 426m3Q2r3
c − 424mQ4r3

c + 120m4r4
c

+ 436m2Q2r4
c + 94Q4r4

c − 162m3r5
c − 117mQ2r5

c + 71m2r6
c − 12Q2r6

c − 4mr7, (B.2a)

G(rc) = −120Q8 + 541mQ6rc − 833m2Q4r2
c − 106Q6r2

c + 568m3Q2r3
c + 180mQ4r3

c + 4mr7
c

− 204m4r4
c − 96m2Q2r4

c + 76Q4r4
c + 174m3r5

c − 195mQ2r5
c − 41m2r6

c + 52Q2r6
c , (B.2b)

W(rc) = −44Q8 + 251mQ6rc − 453m2Q4r2
c − 142Q6r2

c + 270m3Q2r3
c + 480mQ4r3

c

− 48m4r4
c − 392m2Q2r4

c − 90Q4r4
c + 126m3r5

c + 73mQ2r5
c − 55m2r6

c + 24Q2r6
c , (B.2c)

V(rc) = 16Q8 + 123mQ6rc − 629m2Q4r2
c − 166Q6r2

c + 698m3Q2r3
c + 944mQ4r3

c

− 120m4r4
c − 1224m2Q2r4

c − 290Q4r4
c + 174m3r5

c + 645mQ2r5
c − 75m2r6

c

− 104Q2r6
c + 8mr7

c . (B.2d)

V0(rc) = 2Q2 − 3mrc + r2
c . (B.2e)
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b.2 charged massive test particle

For convenience, we provide here the full expressions for the energy and the angular
momentum of circular orbits for a charged massive test particle, in the second-order in Θ

E2
c '

1
r2

c

−qQ + r

√√√√(
1− 2m

rc
+ Q2

r2
c

)
V1(rc)

V2(rc)


2

+

qQ− r

√√√√(
1− 2m

rc
+ Q2

r2
c

)
V1(rc)

V2(rc)



×

√√√√(
1− 2m

rc
+ Q2

r2
c

)
V1(rc)

V2(rc)

 X1(rc) + G1(rc)
√

1− 2m
rc

+ Q2

rc

16r6
c (Q2 − 2mrc + r2

c )V1(rc)V2(rc)

Θ2 +O(Θ4), (B.3a)

L2
c ' −

2r2
c

(
2Q2 −mrc + qQr

√
1− 2m

rc
+ Q2

r2
c

)
V2(rc)

+

 X2(rc) + G2(rc)
√

1− 2m
rc

+ Q2

r2
c

16r3
c (Q2 − 2mrc + r2

c )V(rc)2
√

1− 2m
rc

+ Q2

r2
c

Θ2 +O(Θ4). (B.3b)

where:

V1(rc) = 2Q2 − 4mrc + 2r2
c − qQr

√
1− 2m

rc
+

Q2

r2
c

, (B.4a)

V2(rc) = 4Q2 − 6mrc + 2r2
c + qQr

√
1− 2m

rc
+

Q2

r2
c

, (B.4b)

X1(rc) = −88Q8rc + 518mQ6r2
c − 1074m2Q4r3

c − 204Q6r3
c + 852m3Q2r4

c + 848mQ4r4
c

− 240m4r5
c − 872m2Q2r5

c − 188Q4r5
c + 324m3r6

c + 234mQ2r6
c − 142m2r7

c + 24Q2rc

+ 8mr8
c + q

(
520Q9 − 3298mQ7rc + 7304m2Q5r2

c + 1591Q7r2
c − 6380m3Q3r3

−6885mQ5r3 + 1608m4Qr4
c + 8703m2Q3r4

c + 1596Q5r4
c − 2699m3Qr5

c + 40Qr8
c

−3872mQ3r5
c + 1634m2Qr6

c + 560Q3r6
c − 422mQr7)

+ q2
(

11Q8rc − 52mQ6r2
c + 75m2Q4r3

c + 23Q6r3
c − 30m3Q2r4

c − 62mQ4r4
c

+31m2Q2r5
c + 12Q4r5

c − 8mQ2r6
c

)
, (B.4c)

G1(rc) = 240Q8rc − 1082mQ6r2
c + 1666m2Q4r3

c + 212Q6r3
c − 1136m3Q2r4

c − 360mQ4r4
c

+ 408m4r5
c + 192m2Q2r5

c − 152Q4r5
c − 348m3r6

c + 390mQ2r6
c + 82m2r7

c − 104Q2r7
c

− 8mr8
c + q

(
−110Q7r2

c + 576mQ5r3
c − 912m2Q3r4

c + 300m3Qr5
c + 1034mQ3r5

c

−310Q5r4
c − 456m2Qr6

c − 324Q3r6
c + 226mQr7

c − 24Qr8
c

)
+ q2 (−56Q8rc

+232mQ6r2
c − 93Q6r3

c + 88m3Q2r4
c + 210mQ4r4

c − 77m2Q2r5
c − 36Q4r5

c

+16mQ2r6
c
)

. (B.4d)

X2(rc) = 88Q8rc − 502mQ6r2
c + 906m2Q4r3

c + 284Q6r3
c − 540m3Q2r4

c − 960mQ4r4
c
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+ 96m4r5
c + 784m2Q2r5

c + 180Q4r5
c − 252m3r6

c − 146m3r6
c + 110m2r7

c + 48Q2r7
c

+ q
(
−932Q9 + 5644mQ7rc − 12066m2Q5r2

c − 2577Q7r2
c + 10380m3Q3r3

c − 80Qr8
c

+5970mQ3r5
c − 2736m4Qr4

c − 13725m2Q3r4
c − 2420Q5r4

c + 4637m3Qr5
c − 852Q3r6

c

+10863mQ5r3
c − 2896m2Qr6

c + 790mQr7
c
)

+ q2
(

22Q2rc − 122mQ6r2
c + 192m2Q4r3

c + 88Q6r3
c − 72m3Q2r4

c − 268mQ4r4
c

+152m2Q2r5
c + 78Q4r5

c − 82mQ2r6
c + 12Q2r7

c

)
. (B.4e)

G2(rc) = −32Q8rc − 246mQ6r2
c + 1258m2Q4r3

c + 332Q6r3
c − 1396m3Q2r4

c + 240m4r5
c

− 1888mQ4r4
c + 2448m2Q2r5

c + 580Q4r5
c − 348m3r6

c − 1290mQ2r6
c + 150m2r7

c

+ 208Q2r7
c − 16mr8

c + q
(

242Q7r2
c − 1202mQ5r3

c + 1728m2Q3r4
c + 708Q5r4

c

−582m3Qr5
c − 1982mQ3r5

c + 950m2Qr6
c + 516Q3r6

c − 426mQr7
c + 48Qr8

c
)

+ q2
(
−60Q8rc + 270mQ6r2

c − 368m2Q4r3
c − 136Q6r3

c + 136m3Q2r4
c − 96Q4r5

c

+376mQ4r4
c − 216m2Q2r5

c + 114mQ2r6
c − 20Q2r7

c

)
. (B.4f)
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[274] A. Alonso-Serrano, M. P. Dąbrowski, and H. Gohar, “Generalized uncertainty principle impact onto
the black holes information flux and the sparsity of hawking radiation”, Physical Review D, vol. 97,
no. 4, p. 044 029, 2018.

[275] A. Alonso-Serrano and M. Visser, “Entropy/information flux in hawking radiation”, Physics Letters B,
vol. 776, pp. 10–16, 2018.

[276] ——, “On burning a lump of coal”, Physics Letters B, vol. 757, pp. 383–386, 2016.

[277] S.-W. Wei and Y.-X. Liu, “Observing the shadow of einstein-maxwell-dilaton-axion black hole”, Journal
of Cosmology and Astroparticle Physics, vol. 2013, no. 11, p. 063, 2013.

[278] A Belhaj, M Benali, A El Balali, H El Moumni, and S. Ennadifi, “Deflection angle and shadow behaviors
of quintessential black holes in arbitrary dimensions”, Classical and Quantum Gravity, vol. 37, no. 21,
p. 215 004, 2020.

[279] S. W. Hawking, “Black hole explosions?”, Nature, vol. 248, no. 5443, pp. 30–31, 1974.

[280] X. Calmet, B. Carr, and E. Winstanley, Quantum black holes. Springer, 2014, vol. 2072.



colophon

This document was authored using TeXstudio1 and typeset based on the La Trobe PhD

Thesis Template2 (customization of the classicthesis3 LATEX template) using TeX Live4

on a machine running Ubuntu5. Other notable software tools used during the production
of this document: Wolfram Mathematica6 management.

1 https://www.texstudio.org
2 https://github.com/bashimao/ltu-thesis
3 https://bitbucket.org/amiede/classicthesis
4 https://tug.org/texlive
5 https://ubuntu.com/download
6 https://www.wolfram.com/mathematica/

https://www.texstudio.org
https://github.com/bashimao/ltu-thesis
https://bitbucket.org/amiede/classicthesis
https://tug.org/texlive
https://ubuntu.com/download
https://www.wolfram.com/mathematica/

	Contents
	List of Figures
	List of Tables
	Abstract
	Declaration of Authorship
	Acknowledgments
	Publications
	Seminars and Conferences
	Acronyms
	Introduction
	Overview of General Relativity 
	Einstein gravity
	Generalization of the Special Relativity Principle
	The non-Euclidean geometry of spacetime
	Equivalence principle
	The stress-energy-momentum tensor
	Einstein equation

	Schwarzschild solution
	Classical test of general relativity

	Black hole thermodynamics and Hawking radiation
	Gauge theory of gravity

	Non-commutative Gauge Theory of Gravity
	Motivation of the non-commutative in physics
	Non-commutative framework and gauge theory
	Weyl Transformation
	Moyal product (*-star product)
	Seiberg-Witten map

	Deformed gauge gravity
	Application to the Schwarzschild black hole


	Geometrical Properties of Black holes in non-commutative gauge theory
	NC stationary black hole in gauge theory of gravity
	Non-commutative Schwarzschild black hole
	Singularity and event horizon
	Collapse of matter

	Non-commutative Reissner–Nordström black hole
	Singularity and event horizon


	Motion in the non-commutative space-time
	Non-commutative Schwarzschild spacetime
	Time-like geodesic equation in the NC Schwarzschild spacetime
	Radial motion of massive particles
	Circular motion of massive particles
	Stability condition and Lyapunov exponent
	NC effect on the orbital motion

	Null geodesic equation in the NC Schwarzschild spacetime
	Radial motion of massless particles
	Circular motion of massless particles
	Stability condition and photon sphere
	Lyapunov exponents
	Black hole shadow

	Non-commutative Reissner-Nordström spacetime
	Time-like geodesic motion of neutral particle around a NC RN black hole
	Circular orbit and stability condition
	NC effect on the orbital motion

	Time-like geodesic equation of charged particle around a RN black hole
	NC effect on the circular orbits of charged particles

	Constraint on the NC parameter  from some astrophysical systems
	Gravitational periastron advance in NC spacetime
	Gravitational red-shift
	Gravitational deflection of light
	Gravitational time delay (Shapiro effect)
	Results and discussion


	Thermodynamics proprieties of the deformed black hole 
	Classical black hole thermodynamics in NC spacetime
	Mass, temperature, and entropy of the NC Schwarzschild black hole
	Heat capacity and phase transition
	Helmholtz free energy and black hole stability
	The black hole pressure and Hawking-Page-like phase transition
	Modified first law of the BH thermodynamics

	NC BH in the grand canonical ensemble
	Similarity between non-commutativity and the electric charge of a black hole
	State equation
	Phase transition and free energy

	Black hole phase transition and isothermal cavity
	Local temperature and energy
	Local heat capacity and phase transition

	Quantum tunneling in NC spacetime
	NC correction to the Hawking temperature
	Logarithmic corrections to the entropy in NC spacetime
	Correlations
	NC correction to the density number of particles emitted
	Bekenstein entropy loss and number of particles emitted

	Black hole evaporation process in NC spacetime
	Luminosity of NC SBH radiation
	Energy emission rate
	NC effect on the black hole Lifetime


	Conclusions
	Appendices
	Spherical symmetric metric in NC gauge theory
	Spin connection
	Curvature tensor
	Non-commutative tetrad fields

	Energy and angular momentum of the circular orbit around NC RN BH
	Uncharged massive test particle
	Charged massive test particle

	Bibliography

